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Abstract- Multi-cluster tools are widely adopted in wafer 

fabrication. It is of paramount importance to schedule them to 
achieve their optimal throughput. This work intends to find their 
one-wafer optimal periodic schedule to attain their lower bound cycle 
time. A resource-oriented Petri net model is developed to describe not 
only their steady state behavior but also behavior of their initial and 
final transient processes. Based on the model, this work derives the 
conditions under which one-wafer cyclic schedule with lower bound 
of cycle exists. Then, an algorithm is given to find it by scheduling the 
individual cluster tools one by one, which requires simple calculation 
only. Also, based on the Petri net model, an effective method for the 
implementation of such an optimal schedule is proposed. Examples 
are given to show the results. 
 

Index Terms—semiconductor manufacturing, cluster tool, 
scheduling, Petri net 

 
1. INTRODUCTION 

 
With the single-wafer processing technology, cluster 

tools are widely adopted in semiconductor manufacturing. 
A single cluster tool is composed of 4-6 process modules 
(PM), one wafer-delivering robot (R), and two loadlocks 
(LL) for cassette loading/unloading. The robot can be a 
single or dual-arm one, and thus, the corresponding tool is 
called single or dual-arm cluster tool. To improve the 
productivity, many manufacturers now integrate several 
cluster tools into a wafer fabrication system called a multi-
cluster tool as illustrated in Fig. 1. A multi-cluster tool 
formed by K ≥ 2 single-cluster tools is called K-cluster 
tools. A buffer with a highly limited wafer capacity for 
holding incoming and outgoing wafers is used between two 
adjacent single-cluster tools. 

Extensive studies have been done in the modeling and 
performance evaluation of single-cluster tools [11, 13-18, 
20-22; 27-31, 36]. It is found that, for a single wafer 
product processing in high-volume, a cluster tool operates 
under a steady state and thus a periodic schedule is the 
most desired. Under its steady state, a cluster tool operates 
in one of the two regions: transport- and process-bound 
ones. In the former, its robot is always busy and the system 
cycle time is determined by the robot task time. In the 
latter, its robot has idle time and the cycle time is decided 
by the processing time in PMs. Its robot moving time from 

one PM to another is often treated as a constant and is 
much shorter than the wafer processing time [4, 9]. In this 
case, a backward scheduling strategy is optimal for single-
arm cluster tools [3, 10, 12]. 

Many wafer fabrication processes require that a wafer 
should be removed from a PM within a given time interval 
after it is completed [9, 11]. [20, 28] studied such a 
residency time constraint problem. The developed Petri net 
models are independent of the wafer flow pattern and thus 
reusable. By these models, the robot waiting is modeled 
such that to find an optimal schedule is to simply 
determine the robot waiting time. Determining it is also a 
focus in scheduling a multi-cluster tool, to be shown later. 

The use of multi-cluster tools in industry can be traced 
back to a decade ago [7, 8]. However, a few of research 
results have been reported. In [5], an event graph model, as 
a special class of Petri nets, is used to describe the dynamic 
behavior of a multi-cluster tool. Based on it, a search 
method is proposed to find an optimal periodic schedule, 
which is not necessarily a one-wafer cyclic one. 

The minimal one-wafer cycle time of an individual 
cluster tool is called a fundamental period (FP) [34]. To 
reduce the computational complexity, without considering 
the robot moving time, a decomposition method is 
proposed in [33, 34]. A K-cluster tool is decomposed into 
K single-cluster tools and the FP for each single-cluster 
tool can be obtained as done for scheduling single-cluster 
tools. Then, by analyzing time delays needed for loading 
and unloading the shared buffers between the cluster tools 
in a multi-cluster tool, the cycle time for the system is 
determined. In this way, a feasible schedule is found. 

With robot moving time considered, a polynomial 
algorithm is presented to find an “optimal” multi-wafer 
schedule for multi-cluster tools in [1, 2]. A key idea is to 
determine the number of wafers that are concurrently 
processed in each individual cluster tool in the system via a 
polynomial algorithm. Next, the schedule of an entire 
multi-cluster tool can be obtained by another polynomial 
algorithm, regardless any individual tool is process or 
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Fig. 1.  The illustration of a multi-cluster tool 
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transport-bound, representing a significant advancement in 
scheduling multi-cluster tools. 

Let FPi be the fundamental period of the i-th tool in a K-
cluster tool. Then, Π = max{FP1, FP2, …, FPK} is its lower 
bound of cycle time. Clearly, it is the most desired if it is 
scheduled such that its cycle time is Π. 

The method presented in [1, 2] enable us to find an 
optimal cyclic schedule but it is in general a multi-wafer 
schedule. Their work did not answer under what condition 
an optimal one-wafer cyclic schedule can be found with 
cycle time Π. Note that a schedule of a K-cluster tool may 
be optimal, i.e., its cycle time cannot be lower; but cannot 
be as low as Π. 

This gives rise to a question whether there is always a 
backward schedule for a K-cluster tool such that the lower 
bound of cycle time is reached? If not, under what 
condition and how such a schedule can be found? This 
work answers them for the first time. 

It is known that a one-wafer cyclic schedule is easier to 
understand, control, and implement to keep uniform wafer 
quality [3, 6]. Hence, it is desired that a one-wafer cyclic 
schedule is found for a multi-cluster tool. Further, if such a 
schedule exists, it is the most desired that the lower bound 
of cycle time is reached. Yi et al. [34] give the conditions 
and schedules to realize Π, whereas they ignore the robots’ 
moving time, which is necessary to predict the throughput 
from the practical view. However, when considering 
robots’ moving time, Chan et al. [1] believe that, due to the 
tool interactions, some sort of K-cluster tools are unlikely 
to reach their Π  by a one-wafer cyclic schedule. Thus, this 
work attempts to find it if existing. Notice that, in cluster 
tools, the robot moving time from one PM to another is 
much shorter than the wafer processing time [9], a cluster 
tool often operates in a process-bound region. Hence, this 
paper focuses on the cases that the bottleneck single-cluster 
tool in a multi-cluster is process-bound. Such a K-cluster 
tool is called process- dominant. The key to schedule a 
multi-cluster tool is how to coordinate the activities of its 
multiple robots. The problem is modeled by a generic Petri 
net (PN) model. With this model, the conditions under 
which one-wafer cyclic schedule reaching cycle time Π 
exists are derived. Then an efficient algorithm is given to 
find it if existing. 

The remainder of the paper is organized as follows. 
After briefly discussing the multi-cluster tool operation, a 
PN model is developed in Section 2. Section 3 presents 
how the individual cluster tools should be scheduled. Then, 
the optimality conditions and scheduling algorithm for a 
multi-cluster tool are derived in Section 4. Illustrative 
examples are given in Section 5. Section 6 presents the 
conclusions 

 
 

2. MODELING OF MULTI-CLUSTER TOOLS 
 

2.1 Multi-cluster Tools 
 

A K-cluster tool considered in this paper is composed of 
single-cluster tools that have single-arm robots. According 
to [1, 2], topologically, a multi-cluster tool contains no 
cluster tool cycle, and is tree-like. For the sake of 
simplicity in presentation, we address multi-cluster tools 
with a linear topology as shown in Fig. 1. Without loss of 
generality, following [1, 2], we assume that: 

1) With two loadlocks, while one lot of wafers in one 
loadlock is being processed, the other loadlock can 
be used for loading/unloading another lot of 
wafers. In this way, a multi-cluster tool can be 
operated consecutively without being interrupted. 
Thus, it operates in a steady state for the identical 
wafer processing, or there are always wafers for 
processing; 

2) Tools can hold one wafer at a time without a 
processing function; 

3) A PM can process one wafer at a time; and 
4) All the wafers in a cassette are processed in an 

identical sequence specified in the recipe and visit 
a PM no more than once (except for a buffer 
module); and the loading, unloading, moving time 
of robots and processing time of a wafer at a PM 
are deterministic. 

Let Nn = {1, 2, ..., n} and Ωn = {0}∪Nn. As shown in 
Fig. 1, the K cluster tools forming a K-cluster tool are 
denoted by C1, C2, …, and CK (K ≥ 2). A buffer module 
(BM) shared by Ci-1 and Ci is called an outgoing buffer for 
Ci-1 and incoming one for Ci, 2 ≤ i ≤ K. The loadlocks for 
C1 can be thought of as just an incoming buffer. There are 
a number of processing steps (PSs) in each individual 
cluster tool. In this paper, each buffer connecting two 
adjacent tools is treated as a processing step with 
processing time being zero. Let n[i]+1 be the number of 
steps for processing a type of wafers in Ci, including the 
incoming and outgoing steps. These steps are denoted as 
PSi0, PSi1, …, and PSi(n[i]) with PSi0 and PSi(b[i]) being the 
incoming and outgoing steps, respectively. We use Ri to 
denote the robot in Ci. Then, the routing of a wafer in a K-
cluster tool is as follows: PS10 → PS11 → …→ PS1(b[1]) 
(PS20) → PS21 → … → PS2(b[2]) (PS30) → …→ PS(K-1)(b[K-1]) 
(PSK0) → PSK1 → …→ PSK(n[K]) → … → PSK0 (PS(K-1)(b[K-

1])) → PS(K-1)(b[K-1]+1) → …→ PS30 (PS2(b[2])) → PS2(b[2]+1) 
→ …→ PS20 (PS1(b[1])) → …→ PS1(n[1]) → PS10. At most of 
time, a multi-cluster tool operates in a steady state. Under 
such state, if the backward scheduling is applied, robot Ri 
for Ci operates as follows. Robot Ri moves to PSi(n[i]) → 
unloads a processed wafer from there → moves to PSi0 → 
drops the wafer there → moves to PSi(n[i]-1) → unloads a 
processed wafer from there → moves to PSi(n[i]) → drops 
the wafer there → … → moves to PSi1 → unloads a 
processed wafer from there → moves to PSi2 → drops the 
wafer there → moves to PSi0 → unloads a raw wafer from 
there → moves to PSi1 → drops the wafer there → moves 
to PSi(n[i]). In this way, a robot cycle is completed. 

 
2.2 ROPN for Wafer Flows 
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In this paper, the resource-oriented PN (ROPN) 
developed in [19; 23-26, 32] is used to model a K-cluster 
tool. It is a kind of finite capacity PN defined as PN = (P, T, 
I, O, M, Ҝ), where P is a finite set of places; T is a finite set 
of transitions, P ∪ T ≠ ∅, P ∩ T = ∅; I : P × T → N = {0, 
1, 2, …} is an input function; O: P × T → N is an output 
function; M: P → N is a marking representing the numbers 
of tokens in places with M0 being the initial marking; and 
Ҝ: P → {1, 2, …} is a capacity function where Ҝ(p) 
represents the number of tokens that p can hold at a time. 
The preset of transition t is the set of all input places to t, 
i.e. t = {p: p∈P and I(p, t) > 0}. Its postset is the set of all 
output places from t, i.e. t = {p: p∈P and O(p, t) > 0}. 
Similarly, p’s preset p = {t∈T: O(p, t) > 0} and postset 
p = {t∈T: I(p, t) > 0}. The transition enabling and firing 
rules can be found in [35, 25]. 

As pointed out in [5], to search for an optimal steady 
state schedule of a multi-cluster tool, an appropriate initial 
state should be given to the model. In operating a multi-
cluster tool, there are three major states: the initial transient, 
steady, and final transient states. When a multi-cluster tool 
is turned on, it enters an initial transient state until a steady 
state is reached. Then, the system operates in the steady 
state. When the system needs to stop its operation, it enters 
a final transient state. It is extremely useful to develop a 
model that can describe the dynamic behavior for all three 
states. Also, the wafer types to be processed by a multi-
cluster tool may be changed from time to time; and the 
wafer flow patterns are changed accordingly. A model just 
for the processing of a single wafer type is not reusable. 
Thus, it is desired that a model is independent of wafer 
flow patterns and can describe the behavior of all three 
states. Such a PN model is obtained for single-cluster tools 
in [20-22, 27-31] by using the ROPN modeling method 
proposed in [19, 23]. This work extends the work in [20-22, 
27-31] to develop a PN model that is wafer flow pattern 
independent and can describe the dynamic behavior of all 
three states for multi-cluster tools, which is never done to 
the best knowledge of the authors. 

As pointed out above, the key effort to schedule a multi-
cluster tool is to coordinate the activities of multiple robots 
in loading and unloading the buffers. Thus, to model a 
multi-cluster tool for the scheduling purpose, we must 
model the discrete-event behavior of individual cluster 
tools and buffers. We present the PN model for an 
individual cluster tool first, and then develop it for a buffer. 
The robot in each tool is scheduled by a backward 
sequence. Multiple PMs can be configured for a step in a 
tool. For simplicity of presentation, without loss of 
generality, we assume that there is only one PM at a step 
except Step 0 in C1 for the loadlocks that has infinite 
capacity. Based on this assumption, the behavior of Step j 
in Ci is modeled as follows. 

As a fabrication resource, the PM for Step j in Ci with i 
≠ 1 and j ≠ 0 is modeled by timed place pij with Ҝ(pij) = 1. 
We use place p10 to model the loadlocks in C1 with Ҝ(p10) 
= ∞. Notice that the only difference between p10 and pij 

with i ≠ 1 and j ≠ 0 is their capacity. Thus, we do not need 
to distinguish them when the wafer flow is modeled. 
Places zij and dij are used to model that robot Ri in Ci holds 
a wafer (token) for loading into pij and moving to Step j + 
1 (or Step 0 if j = n[i]), respectively. According to [20, 27] 
for scheduling single-cluster tools, the robot waiting 
should also play an important role in developing a 
scheduling method for a multi-cluster tool in this paper. To 
model it, place qij is used to model that robot Ri in Ci waits 
at Step j for unloading a completed wafer in PMij. Then, 
transitions tij and uij are used to model that the robot Ri 
loads a wafer into PMij and unloads a completed wafer 
from PMij, respectively. The icons used for the places and 
transitions of the model are shown in Fig. 2. By adding 
arcs (zij, tij), (tij, pij), (pij, uij), (qij, uij), and (uij, dij), we 
complete the modeling of Step j in Ci as shown in Fig. 3. 

With the model for a processing step, we can then 
model Ci as follows. Place ri is used to model Ri with Ҝ(ri) 
= 1, meaning that the robot has only one arm and can hold 
one wafer at a time. Transition yij is used to connect ri and 
qij with an arc from ri to yij and another from yij to qij. 
Finally, transition xij, j = 0, 1, 2, …, and n[i]-1, is added 
between places dij and zi(j+1) with an arc from dij to xij and 
another from xij to zi(j+1); xi(n[i]) is added between di(n[i]) and 
zi0 with an arc from di(n[i]) to xi(n[i]) and another from xi(n[i]) to 
zi0. In this way, the modeling of Ci is completed and it is 
shown in Fig. 3. 

To effectively operate a multi-cluster tool is to 
effectively coordinate its multiple robots. Because the 
buffers are the shared resources among tools/robots, the 
key is effectively to schedule the activities that involve 
them. Let BM shared by Ci and Ci+1 be PMi(b[i]) as the 
outgoing buffer for Ci and PM(i+1)0 as the incoming buffer 
or virtual loadlock for Ci+1. It is treated as a processing step 
for both Ci and Ci+1 called Step b[i] for Ci and Step 0 for 
Ci+1, respectively. Places pi(b[i]) and p(i+1)0 with pi(b[i]) = p(i+1)0 
are used to model this BM. Then, with the PN model for a 

Timed place, where pij for a PM performing wafer processing at 
Step j in cluster tool Ci, qij for robot Ri waiting at Step j before 
unloading a wafer from a PM at Step i, in cluster tool Ci.     

ri: robot Ri in Ci available

zij and dij: non-timed place

Timed transition. tij for robot Ri loading a wafer into a PM at Step 
j in Ci; uij for robot Ri unloading a wafer from a PM at Step j in Ci; 
xi0 for robot Ri moving from Step 0 to 1, xij, j = 1, … n[i]-1, for 
robot Ri moving from Step j to j+1 in Ci, xi(n[i]) for robot Ri 
moving from Step n[i] to 0 in Ci; yi0 for Robot Ri moving from 
Step 2 to 1 in Ci, yij for robot Ri Moving from Step j+2 to j, j = 
1, …, n[i]-2, yi(n[i]-1) for robot Ri moving from Step 0 to  n[i]-1, 
and yi(n[i]) for robot Ri moving from Step 1 to n[i] in Ci.

PLACES:

TRANSITIONS:

 
Fig. 2. Icons used in the PN model 
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processing step, Step b[i] for Ci is modeled by {pi(b[i]), qi(b[i]), 
zi(b[i]), di(b[i]), ti(b[i]), ui(b[i])} and Step 0 for Ci+1 by {p(i+1)0, 
q(i+1)0, z(i+1)0, d(i+1)0, t(i+1)0, u(i+1)0} as shown in Fig. 4. Notice 
that pi(b[i]) and p(i+1)0 are for the same BM. Thereafter, when 
we refer to Step b[i] in Ci, we use pi(b[i]), while for Step 0 in 
Ci+1 we use p(i+1)0. It should be pointed out that Step 0 in C1 
(the loadlocks) is not shared by any other cluster tool and 
there is no outgoing buffer in CK. 

Up to now, we present the structure of a PN model for 
the system, but not the initial marking M0. For a process-
dominant multi-cluster tool in its steady state, if every PMij 
has a wafer being processed with j ≠ 0, the system reaches 
its maximal throughput. Thus, we let 

(1) M0(p10) = n, M0(p1(b[1])) = 0, and M0(p1j) = 1 with j ∉ 
{0, b[i]}; 

(2) For K > i ≥ 2, M0(pij) = 1 with j ∉ {0, b[i]} and 
M0(pij) = 0 with j ∈ {0, b[i]};  

(3) M0(pK0) = 0, M0(pKj) = 1 with j ∉ 0; and  

(4) For any i ∈ NK and j, M0(qij) = M0(zij) = M0(dij) = 0, 
and M0(ri) = 1 as the initial marking for the PN model. 

Observing the PN model for a multi-cluster tool 
developed above, at M0, any transition of yij is both process 
and resource-enabled according to the transition enabling 
rule. Assume that PM11 is not a BM and, at marking M0, 
we fire y10, then u10, followed by x10 such that a token 
moves into z11. At this marking, t11 is process-enabled, but 
not resource-enabled for M0(p11) = Ҝ (p11) = 1, leading to a 
dead marking. To solve this problem, we make the PN 
model a controlled PN. A PN is said to be controlled if at 
least one of its transitions can be controlled. A transition t 
is said to be controlled if its firing is determined by a 
control policy when t is both process and resource-enabled 
according to the enabling rule. Thus, a transition in a 
controlled PN is enabled if it is process, resource, and 
control-enabled. Here, all the transitions yij are controlled 
transitions. The control policy is defined as follows. 

Definition 2.1: At marking M, transition yij, i ∈ NK and j 
∈ Ωn[i]-1, is said to be control-enabled if M(pi(j+1)) = 0; y1(n[i]) 
is so if M(p1(n[i])) = 1; and yi(n[i]), i ∈ NK–{1}, is so if M(pi0) 
= 0. 

Thereafter, we assume that the PN model is controlled 
by the control policy given in Definition 2.1 . 

Observe the PN model for a buffer shown in Fig. 4. 
Place pi(b[i]) (p(i+1)0) has two output transitions ui(b[i]) and 
u(i+1)0. Hence, there is a conflict when there is a token in 
pi(b[i]) (p(i+1)0). When a token enters pi(b[i]) by firing ti(b[i]) for 
Step b[i] in Ci, it should enable u(i+1)0 for Step 0 in Ci+1. 
However, when a token enters p(i+1)0 by firing t(i+1)0 for 
Step 0 in Ci+1, it should enable ui(b[i]) for Step b[i] in Ci. To 
avoid such a conflict, colors are introduced into the model. 
We first define the color for a transition. 

Definition 2.2: Define the color of transition ti as C(ti) = 
{ci}. 

By Definition 2.2, the colors for ui(b[i]) and u(i+1)0 are 
ci(b[i]) and c(i+1)0, respectively. With Definition 2.2, we can 
define the color for a token as follows. 

Definition 2.3: If a token in p ∈ ti enables ti, then it has 
the same color ci as ti. 

For example, when a token enters pi(b[i]) by firing ti(b[i]) 
for Step b[i] in Ci, it has color c(i+1)0, while it enters p(i+1)0 
by firing t(i+1)0 for Step 0 in Ci+1, it has color ci(b[i]) for Step 
b[i] in Ci. In this way, the transition enabling and firing 
rules for colored PN can be applied and the conflicts are 
resolved. 

The proposed PN model can also describe the behavior 
of an initial and final transient process by using a special 
type of tokens, called W0. For example, we initially put all 
W0-tokens in pij’s to form M0 such that all tokens in the 
system, except that in p10, are W0 tokens. With M0 and the 
transition enabling and firing rules, the PN model can be 
run by just using a backward strategy as follows to reach 
the steady state. Without loss of generality, we assume that, 
at M0, robot Ri for Ci is at Step n[i], or M0(qi(n[i])) = 1. 

Then, for C1, the following transition firing sequence is 
executed: firing transition u1(n[1]) → x1(n[1]) → t10 → y1(n[1]-1) 

 

…

…

pi0 qi0

ti0

ui0

di0

zi0

pi1

qi1

zi1 di1

ti1 ui1

pij

qij

zij

dij

uij

tij

qi(n[i])

ui(n[i]) ti(n[i])pi(n[i])

di(n[i])
zi(n[i])

yij

yi(n[i])

yi1

yi0

ri

xi1

xi(j-1)

xi(n[i])

xi0

xij
xi(n[i]-1)

PSi0

PSi1

PSij

PSi(n[i])

n

 
Fig. 3. The PN model for an individual cluster tool Ci 

  

yi(b[i])ri

ti(b[i])

y(i+1)0

zi(b[i])

 d(i+1)0

z(i+1)0
di(b[i])

pi(b[i])

ui(b[i])

qi(b[i])

q(i+1)0

u(i+1)0

p(i+1)0

xi(b[i]-1)

x(i+1)0

x(i+1)n[i+1]
xi(b[i])

t(i+1)0

ri+1

Step 0 for Ci+1

Step b[i] for Ci

 
Fig. 4. The PN model for a buffer 
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→ u1(n[1]-1) → x1(n[1]-1) → t1(n[1]) → …→ y1(b[1]). 
At the same time, for Ci, 2 ≤ i ≤ K–1, the following 

sequence is executed: ui(n[i]) → xi(n[i]) → ti0 → yi(n[i]-1) → 
ui(n[i]-1) → xi(n[i]-1) → ti(n[i]) → …→ yi(b[i]). 

For CK, the following sequence is executed: uK(n[K]) → 
xK(n[K]) → tK0 → yK(n[K]-1) → uK(n[K]-1) → xK(n[K]-1) → tK(n[K]) 
→ … → yK0. 

Then, for C1, after t20 is fired, the following sequence is 
executed: u1(b[1]) → x1(b[1]) → t1(b[1]+1) → y1(b[1]-1) → … → 
y10 → u10 (unloading a real wafer W1) → x10 → t11 (loading 
W1 into Step 1) → y1(n[1]). 

For Ci, 2 ≤ i ≤ K–1, after t(i+1)0 and t(i-1)(b[i-1]) are fired, 
the following sequence is executed: ui(b[i]) → xi(b[i]) → 
ti(b[i]+1) → yi(b[i]-1) → … → yi0 → ui0 → xi0 → ti1 → yi(n[i]). 

For CK, after t(K-1)(b[K-1]) is fired, the following sequence 
is executed: uK0 → xK0 → tK1 → yK(n[K]). In this way, a 
marking M that is equivalent to M0 is reached. Hence, the 
above process can be repeated until that all W0 tokens 
come into P10. At this time, the steady state is reached. 
When the system should be stopped, we change all tokens 
in p10 into W0-tokens. Every time u10 fires, we unload a W0 
token from p10. When all tokens in the model are type W0, 
the final transient process ends. In this way, the model can 
describe all three states without changing the net structure. 

 
2.3 Modeling Activity Time 

 
To schedule a multi-cluster tool is to determine the start 

time of every activity. Thus, the model should describe the 
temporal aspect of the system. In the PN model, all 
transitions are for robot tasks that take time and some of 
the places, such as pij and qij, are timed ones. Hence, time 
is associated with both transitions and places in the model. 
If time ζ is associated with transition t, firing t takes ζ time 
units. If it is associated with p, a token must stay in p for at 
least ζ time units before it can enable p’s output transition. 
As done in [1], we assume that the time taken by robot Ri 
in Ci to load/unload a wafer into/from a PM is same, as 
denoted by λi. Also, the time taken by robot Ri in Ci to 
move from a PM to another is same, as denoted by µi, 
regardless of whether the robot carries a wafer or not. The 
time taken for processing a wafer in a PM at Step j for Ci is 
αij. If Step j for Ci is a buffering step, including the 
loadlocks, αij = 0, and otherwise it is greater than zero. We 
use ωij to denote Ri’s waiting time in qij and τij the wafer 
sojourn time in a PM at Step j for Ci. 

 
3. INDIVIDUAL CLUSTER TOOL SCHEDULING 

 
Based on its PN model we analyze the time taken to 

complete a wafer at Step j in cluster tool Ci with robot Ri’s 
waiting time being considered. Without loss of generality, 
we assume that for any Ci we have n[i] ≥ 2. It follows from 
[20] that the time taken for processing a wafer at Step j in 
Ci is 

ξij = αij + 4λi + 3µi+ ωi(j-1), j ∈ Nn[i]          (3.1) 

For Step 0, αi0 = 0 and we have 
ξi0 = 4λi + 3µi + ωi(n[i])            (3.2) 

It follows from (3.1) and (3.2) that robot waiting has 
effect on the processing time for completing a wafer in a 
PM. By removing the robot waiting time in (3.1) and (3.2), 
we have 

ηij = αij + 4λi + 3µi, j ∈ Nn[i]                        (3.3) 
and      ηi0 = 4λi + 3µI                      (3.4) 

Expressions (3.3) and (3.4) present the shortest time 
needed for processing a wafer at Step j in Ci. If a wafer 
stays in the PM at Step j for more than the required 
processing time, or τij ≥ αij, it is still a feasible. Thus, by 
replacing αij by τij ≥ αij, we have 

θij = τij + 4λi + 3µi+ ωi(j-1), j ∈ Nn[i]            (3.5) 
and        θi0 = τi0 + 4λi + 3µi + ωi(n[i])        (3.6) 

Observe the PN shown in Fig. 4 for buffering Step b[i] 
for Ci. When wafer Wk is loaded into pi(b[i]) by firing ti(b[i]), 
Wk can be unloaded immediately by firing u(i+1)0. Similarly, 
for Step 0 in Ci+1, a wafer loaded by firing t(i+1)0 can be 
unloaded immediately by firing ui(b[i]). It means that the real 
wafer sojourn time in a buffering step depends not only on 
the schedule of cluster tool Ci but also that of Ci+1. We 
define the virtual wafer sojourn time for a buffering step. 
For buffering Step j in Ci, let υj1 and υj2 be the time points 
when tij and uij fire for their k-th time, respectively. Next, 
define τij = υj2 – υj1 as the virtual wafer sojourn time at 
buffering Step j = b[i] or 0. From the viewpoint of cluster 
tool Ci, it is equivalent that there is a wafer staying there 
for τij time units. Thus, thereafter, when we mention wafer 
sojourn time in Step j for Ci, it means the real wafer 
sojourn time if it is a processing step, or the virtual wafer 
sojourn time if it is a buffering step. 

In the PN model shown in Fig. 3, for cluster tool Ci, 
assume that marking M is reached such that M (pij) = 1, j ∈ 
Ωn[i] – {1}, M (qi0) = 1, and M (pi1) = 0. Then, to complete 
a robot cycle in Ci, a transition firing sequence in the 
backward schedule should be executed. By using the 
results in [20], we have the cycle time of Ri 
ψi = 2(n[i] + 1)(λi + µi) + ∑ =

][

0

in

j ijω  

=  ψi1 + ψi2, i∈NK                                                   (3.7) 
where ψi1 = 2(n[i] + 1)(λi + µi) is the robot cycle time 
without waiting and is a constant, while ψi2 = ∑ =

][

0

in

j ijω is 

the robot waiting time in a cycle. 
Let Πi = max{ηi0, ηi1, …, ηi(n[i]), ψi1}. If Πi = max{ηi0, 

ηi1, …, ηi(n[i])}, cluster Ci is process-bound, otherwise it is 
transport-bound. For each individual tool Ci, it is a serial 
manufacturing process. Thus, for a one-wafer schedule in 
the steady state, the productivity for each step must be 
same, or the time to complete a wafer for every step in Ci 
must be same. This implies that Ci should be scheduled 
such that 

Θi = θi0 = θi1 = … = θi(n[i])  
and τij ≥ αij, i ∈ NK, j ∈ Ωn[i]                       (3.8) 

By (3.8), during Θi, one wafer is completed in Ci, or Θi 
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is the cycle time for the wafer processing process. Note 
that a wafer is completed during ψi. Thus, in steady state, 
Ci should be scheduled such that ψi = Θi. In this case, ψi2 = 
Θi – ψi1 is the Ri’s idle time for a cycle. In other words, the 
sum of robot Ri’s waiting time in a cycle should be equal to 
its idle time. 

Assume that Πi = max{ηi0, ηi1, …, ηi(n[i])}. Then, if Θi < 
Πi, it follows from (3.3) - (3.6) that there is at least j ∈ Ωn[i] 
such that τij < αij. In this case, no infeasible schedule can 
be found. When Πi = ψi1 and Θi < Πi, Ri is not fast enough 
to complete a wafer during Θi, leading to an infeasible 
schedule. However, if Θi ≥ Πi, τij ≥ αij can be satisfied by 
appropriately setting ωij’s and, at the same time, Ri is fast 
enough to complete a wafer in a cycle. Thus, to schedule Ci, 
i ∈ NK, is to determine Θi ≥ Πi and ωij’s such that (3.8), ψi2 
= Θi – ψi1, and Θi = ψi are all satisfied. In this way, given 
Θi, we parameterize the schedule of individual cluster tools 
by ωij’s. 

 
4. INDIVIDUAL CLUSTER TOOL SCHEDULING 

 
Based on the result developed in the last section, this 

section presents the scheduling method for a K-cluster tool 
composed of K single-cluster tools. Before doing so, we 
first establish the optimality conditions. 

 
4.1 Optimality Analysis 

 
Let Π = max{Π1, Π2, …, ΠK} and Θ be the scheduled 

cycle time of a K-cluster tool. Further, let Π = Πh, or the 
FP of Ch is the largest one among the single-cluster tools 
that form the K-cluster tool. Without loss of generality, we 
assume that 2 ≤ h ≤ K–1. The results obtained thereafter 
can be easily extended to the cases with h = 1 and h = K. 
By assumption, Ch is process-bound and such a K-cluster 
tool is called process-dominant multi-cluster tool. In 
cluster tool Ci, there are n[i]+1 steps, including two 
buffering steps in Ci (i ≠ K) numbered as 0 and b[i]. For CK, 
there is only one buffering Step 0. Thus, for i ≠ K, there are 
n[i] – 1 processing steps, or n[i] – 1 wafers can be 
concurrently processed. For i = K, there are n[i] + 1 steps 
and one buffering step, or n[i] wafers can be concurrently 
processed. According to [1, 2], only when cluster tool Ci is 
transport-bound, it is possible to shorten Πi by reducing the 
number of wafers that are concurrently processed. This 
implies that backward scheduling is optimal for Ch with Πh 
= Π being the lower bound of cycle time and, under such a 
scheduling strategy, there are n[h] – 1 wafers that are being 
concurrently processed. Then, we have the following result. 

Proposition 4.1: Under its steady state, a process-
dominant K-cluster tool has the lower bound of cycle time 
of Ch, or 

Θ ≥ Π = Πh                            (4.1) 
With Proposition 4.1, we call Ch the bottleneck in the K-

cluster tool. Proposition 4.1 means that if a schedule can be 

found for a process-dominant K-cluster tool such that Θ = 
Π, it must be optimal in terms of its cycle time. 

Proposition 4.2: If cluster tool Ci of a K-cluster tool is 
scheduled such that its cycle time is Θi, the cycle times of 
Ci-1 and Ci+1 must be greater than or equal to Θi, or 

Θi-1 ≥ Θi                                                                  (4.2) 
and              Θi+1 ≥ Θi                      (4.3) 

Proof: Consider the PN model for the buffering step 
shared by Ci-1 and Ci shown in Fig. 4. Assume that, at 
marking M, ti0 fires and a token is put into pi0 (p(i-1)(b[i-1])). 
By definition, this token enables u(i-1)(b[i-1]). Further, assume 
that, at the end of ti0’s firing, a token in q(i-1)(b[i-1]) is 
available. Thus, after firing ti0, u(i-1)(b[i-1]) fires immediately. 
Then, although a token may enter q(i-1)(b[i-1]) again at time τ 
< Θi, a token can be put into pi0 (p(i-1)(b[i-1])) by firing ti0 
again only Θi time units later. Thus, the token in q(i-1)(b[i-1]) 
has to wait for the arrival of the token in pi0 (p(i-1)(b[i-1])) 
before u(i-1)(b[i-1]) can fire again. This implies that u(i-1)(b[i-1]) 
can fire again at least Θi time units later. Because the 
process for any individual cluster tool is a serial one, (4.2) 
must hold. Similarly, we can show that (4.3) holds.  

It follows from (4.2) and (4.3) that, for Ci and Ci+1, we 
have Θi+1 ≥ Θi and Θi ≥ Θi+1. In other words, Θi = Θi+1 
must hold. Thus, we have the following result. 

Proposition 4.3: A K-cluster tool should be scheduled 
such that all individual cluster tools have the same cycle 
time and it is equal to the cycle time of the K-cluster tool, 
or 

Θ1 = Θ2 = … = ΘK = Θ                        (4.4) 
A K-cluster tool can be seen as a flow line with a single-

cluster tool being an operator. Thus, when a K-cluster tool 
is scheduled such that (4.4) holds, its operation must be 
paced. It follows form Propositions 4.1 and 4.3 that we 
have the following result immediately for finding an 
optimal one-wafer schedule. 

Theorem 4.1: To find an optimal one-wafer periodic 
schedule for a process-dominant K-cluster tool, the system 
should be scheduled such that 

Θ1 = Θ2 = … = ΘK = Θ = Π = Πh              (4.5) 
By Theorem 4.1, it means that each individual tool Ci in 

a K-cluster tool should be scheduled such that Θi ≥ Πi. If 
Ci is process-bound, we have Θi ≥ Πi = max{ηi0, ηi1, …, 
ηi(n[i])} that can be achieved by backward scheduling with 
n[i] – 1, i ≠ K (n[i] if i = K) wafers being concurrently 
processed. In fact, according to the method for individual 
cluster tool scheduling presented in the last section, this 
can be done by appropriately determining the robot waiting 
time ωij’s. If Ci is transport-bound, we have i ≠ h and Θi > 
Πi = ψi1. This means that it is meaningless to shorten Πi = 
ψi1 by reducing the number of wafers that are concurrently 
processed in Ci. In other words, for such a case, backward 
scheduling can still be applied without deteriorating the 
performance of the K-cluster tool. Hence, for a process-
dominant K-cluster tool, every individual cluster tool can 
be scheduled by a backward strategy. Then, according to 
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the scheduling method for individual cluster tools, to 
optimally schedule a process-dominant K-cluster tool is to 
determine ωij’s for i ∈ NK and j ∈ Ωn[i] such that its 
multiple robots can be optimally coordinated. We have the 
following result. 

Theorem 4.2: Robots Ri and Ri-1 can operate 
independently with the lower bound cycle time Πh, if and 
only if, for Ci and Ci-1, 2 ≤ i ≤ K, the following conditions 
are satisfied by determining ωij’s and ω(i-1)f’s: 

1) θij = θ(i-1)f = Θ = Πh, j ∈ Ωn[i] and f ∈ Ωn[i-1]; and 
2) the virtual wafer sojourn time τi0 is not less than 4λi-

1 + 3µi-1 + ω(i-1)(b[i-1]-1). 
Proof: To obtain an optimal one-wafer periodic 

schedule for a process-dominant K-cluster tool, (4.5) must 
be satisfied. Based on the method of individual cluster tool 
scheduling presented in the last section, to make Θi = Θ = 
Πh, if and only if Ci is scheduled such that the time taken 
for completing a wafer at every Step j, j ∈ Ωn[i], is Θi = Θ = 
Πh. Thus, condition 1) should hold. According to the 
method of individual cluster tool scheduling, such a 
schedule is determined by the values of ωij’s and ω(i-1)f’s. 
Next, we need to show the necessity and sufficiency of the 
condition 2). 

Necessity. In Ci, it follows from condition 1) and the 
scheduling method for individual cluster tools that Θ = Πh 
= τi0 + 4λi + 3µi + ωi(n[i]) holds. From the viewpoint of Ci, 
τi0 = Θ – (4λi + 3µi + ωi(n[i])). With the PN model for the 
buffering Step 0 in Ci, let φ1 denote the time point when 
firing ti0, i.e., loading a wafer into pi0, ends, and φ2 the time 
point when the first firing ui0, i.e., unloading a wafer from 
pi0, starts after firing ti0. Then, it follows from the 
definition of virtual wafer sojourn time in a buffer and the 
schedule for Ci that we have τi0 = φ2 – φ1. Assume that, 
after firing ti0, transition u(i-1)(b[i-1]) in Step b[i-1] for Ci-1 
fires immediately at φ1 to unload the wafer loaded into p(i-

1)(b[i-1]) by firing ti0. By starting from time point φ1, it 
undergoes the following transition firing sequence for Ri in 
Ci: σ1 = <u(i-1)(b[i-1]) → x(i-1)(b[i-1]) → t(i-1)(b[i-1]+1) → y(i-1)(b[i-1]-1) 
→ waiting in q(i-1)(b[i-1]-1) with ω(i-1)(b[i-1]-1) → u(i-1)(b[i-1]-1) → 
x(i-1)(b[i-1]-1) → t(i-1)(b[i-1])>. Let φ3 denote the time point when 
firing t(i-1)(b[i-1]) ends. After its firing, a wafer is loaded into 
p(i-1)(b[i-1]) (pi0) at φ3 to enable ui0. This means that ui0 cannot 
start firing at φ2, but φ3. Thus, from the viewpoint of Ci, the 
time taken for completing a wafer at Step 0 is Θ’ = (φ3 – φ1) 
+ 4λi + 3µi + ωi(n[i]) but not Θ = τi0 + 4λi + 3µi + ωi (n[i]). 
Because the time taken by transition firing sequence σ1 is 
4λi-1 + 3µi-1 + ω(i-1)(b[i-1]-1), we have φ3 – φ1 = 4λi-1 + 3µi-1 + 
ω(i-1)(b[i-1]-1). Hence, assume that condition (2) is not 
satisfied, or φ3 – φ1 = 4λi-1 + 3µi-1 + ω(i-1)(b[i-1]-1) > τi0, then 
Θ’ > Θ, or the cycle time of Ci is greater than Θ. This 
shows the necessity of condition 2). 

Sufficiency. It follows from the individual cluster tool 
scheduling method given in the last section and condition 1) 
that every step in Ci is scheduled such that its cycle time is 
Θ. Obviously, if Ci does not share any step with other 
individual tools, the schedule can be executed for Ci with 

cycle time Θ. This implies that we need to examine the 
buffering steps in Ci only. If the schedule can be executed 
for the two buffering steps, such a schedule can be 
executed for Ci. With the PN model shown in Fig. 4, we 
examine buffering Step b[i-1] in Ci-1. It is scheduled such 
that Θ = Πh = τ(i-1)(b[i-1]) + 4λ i-1 + 3µ i-1 + ω(i-1)(b[i-1]-1). Let φ4 
denote the time point when firing ti0, i.e., loading a wafer 
into p(i-1)(b[i-1]), ends, and φ5 the time point when the first 
firing ui0 for unloading a wafer from pi0 starts after firing ti0. 
According to the schedule, we have φ5 – φ4 = τi0. After 
firing ti0, one can schedule Ci-1 such that transition u(i-1)(b[i-1]) 
fires immediately at φ4 to unload the wafer loaded into p(i-

1)(b[i-1]) by firing ti0. By starting from time point φ4, it 
undergoes transition firing sequence σ1. Let φ6 denote the 
time point when firing ti0 ends. After firing ti0, a wafer is 
loaded into p(i-1)(b[i-1]) (pi0) at φ6 to enable u(i-1)(b[i-1]). Notice 
that the time taken for executing σ1 is 4λi-1 + 3µi-1 + ω(i-

1)(b[i-1]-1) time units, or φ6 – φ4 = 4λi-1 + 3µi-1 + ω(i-1)(b[i-1]-1). 
By condition 2), we have φ5 – φ4 = τi0 ≥ 4λi-1 + 3µi-1 + ω(i-

1)(b[i-1]-1) = φ6 – φ4. This implies that φ6 ≤ φ5, or a token is 
put into p(i-1)(b[i-1]) (pi0) before ui0 needs to fire. This implies 
that whenever ui0 is scheduled to fire, it is enabled. Thus, 
for buffering Step PSi0 the schedule is executable. If 
conditions 1) and 2) hold for Ci and Ci+1, by (3.5) and (3.6), 
we have τ(i+1)0 = Θ – (4λ i+1+ 3µi+1 + ω(i+1)(n[i+1])) ≥ 4λi + 3µi 
+ ωi(b[i]-1) = Θ – τi(b[i]), thus, τi(b[i]) ≥ 4λi+1 + 3µi+1 + 
ω(i+1)(n[i+1]). Consider the buffering Step PSi(b[i]) shared by Ci 
and Ci+1, one can similarly show that, the schedule is 
executable for Step PSi(b[i]). Hence, for every Ci, the 
schedule is executable and the cycle time for the K-cluster 
tool is Θ = Πh, i.e., Ri and Ri-1 can operate independently 
with the same cycle time Πh.    

The conditions given in Theorem 4.2 can be illustrated 
by Fig. 5 where τi0 is a time window with φ2 – φ1 being its 
width. For Ci, Ri puts a wafer into the buffer at φ1, and then 
at φ2, Ri should take a wafer away from the buffer. For Ci-1, 
during the window 4λi-1 + 3µi-1 + ω(i-1)(b[i-1]-1), Ri-1 unloads a 
wafer from and then puts a wafer into the buffer. Thus, 
there is a wafer to be unloaded by Ri at φ2 only if τi0 ≥ 4λi-1 
+ 3µi-1 + ω(i-1)(b[i-1]-1). In this way, Ri’s activities are not 
affected by that of Ri-1’s. Theorem 4.2 presents the 
conditions under which the lower bound of cycle time can 
be obtained. However, it does not reveal how to verify the 
conditions, to be discussed next. 

 
4.2 Scheduling K-Cluster Tool 
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Fig. 5.  Illustration of Theorem 4.2 

Zhu et al: Scheduling Single-Arm Multi-Cluster Tools with Lower Bound Cycle Time via Petri Nets 119



If conditions 1) and 2) in Theorem 4.2 hold, by (3.5) 
and (3.6), we have τi(b[i]) ≥ 4λi+1 + 3µi+1 + ω(i+1)(n[i+1]). It 
follows from the proof of Theorem 4.2 that, if every 
individual tool Ci in a K-cluster tool can be scheduled such 
that conditions 1) and 2) in Theorem 4.2 are satisfied, its 
multiple robots can be coordinated such that Ci, i ∈ NK, 
can operate as follows: whenever Ri needs to load a wafer 
into a buffering step as scheduled, the BM is idle, and also 
whenever it needs to unload a wafer from a buffering step 
as scheduled, there is a wafer available. In this way, we can 
think that each individual tool can operate independently 
without intervening each other. Notice that the conditions 
given in Theorem 4.2 are functions of ωij’s. Thus, the key 
question is how to determine ωij’s. 

Let Θ = Πh be the lower bound of cycle time for a K-
cluster tool. For Ci, by examining the buffering Steps 
PSi(b[i]) and PSi0, we have Θ = τi(b[i]) + 4λi + 3µi + ωi(b[i]-1) 
and Θ = τi0 + 4λi + 3µi + ωi(n[i]). Further, let φi(b[i]) = 4λi + 
3µi + ωi(b[i]-1) and φi0 = 4λi + 3µi + ωi(n[i]). To make the 
conditions in Theorem 4.2 satisfied, we need to determine 
ωij’s such that τi(b[i]) and τi0 are as large as possible, while 
φi(b[i]) and φi0 as small as possible. Notice that small ωi(b[i]-1) 
results in large τi(b[i]) and small φi(b[i]) as well. Similarly, 
small ωi(n[i]) results in large τi0 and small φi0. Furthermore, 
for Ci, we have Θ = ψi = 2(n[i] + 1)(λi + µi) + ∑ =

][
0

in
d idω = 

ψi1 + ψi2, leading to Ri’s idle time in a cycle ψi2 = Θ – 2(n[i] 
+ 1)(λi + µi) that should be allocated to robot waiting time. 
A process-dominant K-cluster tool studied implies that Θ ≥ 
ψi1, or ψi2 ≥ 0. Hence, to optimally schedule a process-
dominant K-cluster tool is to schedule Ci by allocating ψi2 
into ωij’s such that ωi(n[i]) and ωi(b[i]-1) are as small as 
possible. By ψi2, Θ = τij + 4λi + 3µi+ ωi(j-1), and the 
scheduling method of individual cluster tools, it is easy to 
schedule Ci such that ωi(n[i]) + ωi(b[i]-1) is as small as possible. 
The key issue is how to determine the value of ωi(n[i]) and 
ωi(b[i]-1) to meet the conditions in Theorem 4.2. 

Notice that, for CK, there is only one buffering step PSK0. 
This implies that we need to make only ωK(n[K]) as small as 
possible and this can be done by using the method 
presented in the last section. With ωK(n[K]) determined, τK0 
is known. Then, for CK-1, we can set the largest value to 
ω(K-1)(b[K-1]-1) such that the conditions given in Theorem 4.2 
for CK and CK-1 are satisfied. Then, we can make ω(K-1)(n[K-1]) 
as small as possible. In this way, we can schedule a 
process-dominant K-cluster tool by scheduling the 
individual cluster tool one by one as presented by 
Algorithm 4.1 below. With Algorithm 4.1, its output Γ 
represents whether a one-wafer cyclic schedule with cycle 
time Πh is found or not. 
_______________________________________________ 
Algorithm 4.1: Schedule a process-dominant K-cluster by 
determining ωij’s. 
Input: αij, λi, µi, (i ∈ Nk, j ∈ Ωn[i]) 
Output: ωij, Γ, Q, (i ∈ Nk, j ∈ Ωn[i]) 

i) Let Θ ←
1
max( )ii K≤ ≤

Π , Γ ← 1, Q ← 0 

ii) Determine ωKj, j ∈ Ωn[K] for RK as 
1) For j ← 0 to n[K] – 1 do  
2)    ωKj ← min{Θ – (4λK + 3µK + αK(j+1)), Θ – 2(n[K] 

+ 1)(λK + µK) –∑ −
=
1
0

j
m Kmω } 

3) EndFor 
4) ωK(n[K]) ← Θ – 2(n[K] + 1)(λK + µK) – 

[ ] 1

0

n K
Kmm

ω−

=∑  

5) τK0 ← Θ – (4λK + 3µK + ωK(n[K])) 
iii) If K > 2, determine ωij for Ri, 1 ≤ i ≤ K–1, j ∈ Ωn[i] as. 

1) i ← K – 1 
2) While i ≥ 1 and τ(i+1)0 ≥ (4λi + 3µi) do 
3)    ωi(b[i]-1) ← min{τ(i+1)0 – (4λi + 3µi), Θ –2(n[i] + 

1)(λi + µi)} 
4)    For j ← 0 to n[i] and j ≠ b[i] –1 do   
5)     ωij ← min{Θ – (4λi + 3µi + αi(j+1)), Θ – 2(n[i] + 

1)(λi + µi) –∑ −

=

1

0

j

m imω } 

6)    EndFor 
7)    τi0 ← Θ – (4λi + 3µi + ωi(n[i])) 
8)    i ← i – 1 
9) EndWhile 

iv)  Decide whether reaching the lower bound. 
1) If i > 0 Then Γ ← 0, Q ← i 
2) EndIf  

_____________________________________________ 

By Algorithm 4.1, if it returns Γ = 1, for Ci, 1 ≤ i ≤ K – 
1, ωi(n[i]) and ωi(b[i]-1) are determined such that the 
conditions in Theorem 4.2 are satisfied. By Algorithm 4.1, 
if it returns Γ = 0, its output Q represents that the 
conditions given in Theorem 4.2 for CQ and CQ+1 are 
violated, i.e., τ(Q+1)0 ≥ (4λQ + 3µQ) does not hold. Thus, if it 
returns Γ = 1, a solution is obtained such that the 
conditions in Theorem 4.2 are satisfied. Thus, we have the 
following result immediately. 

Theorem 4.3: If a one-wafer periodic schedule with the 
lower bound Πh of cycle time for a process-dominant K-
cluster tool is found by Algorithm 4.1 with its output Γ = 1, 
the schedule is optimal in terms of cycle time. 

It follows from Algorithm 4.1 that the robots’ waiting 
time determines if the condition given Theorem 4.3 can be 
satisfied. If it is not correctly set, such a schedule cannot be 
found even if it exists. If Algorithm 4.1 returns Γ = 0, it 
implies that τ(i+1)0 ≥ (4λi + 3µi) for i ∈ NK-1 does not hold 
even if τ(i+1)0 (i ∈ NK-1) is maximized by Algorithm 4.1, i.e., 
it is impossible to find the robots’ appropriate waiting time 
to satisfy the conditions in Theorem 4.2. We have the 
following corollary. 

Corollary 4.1: If Algorithm 4.1 is applied to a process-
dominant K-cluster tool with its output Γ = 0, there is no 1-
wafer cycle schedule reaching the lower bound of its cycle 
time. 

Obviously, the computational complexity of Algorithm 
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4.1 is O(K). Thus, it is extremely efficient and represents a 
significant progress in this research field. 

 
4.3 Schedule Implementation 

 
By Algorithm 4.1, when Ri in Ci loads a wafer into PSi0 

by firing ti0, u(i-1)(b[i-1]) fires immediately to unload this 
wafer by robot Ri-1 in Ci-1. This means that the multiple 
robots cannot act independently, but should act 
synchronously. Let φK0, the starting time point of firing tK0 
in CK, be the datum for the activities of RK. For i ∈ NK-1, let 
φi(b[i]), the starting time point for firing ui(b[i]) in Ci, be the 
datum for the activities of Ri. For CK, assume that the 
initial operation starts from firing tK0 to put a token into pK0, 
which takes time λK. Let ∆K = λK. For i ∈ NK-1, between the 
firings of ui(b[i]) and ti0, the following transition firing 
sequence is executed: 

σi = 〈firing ui(b[i]) (with time λi) → xi(b[i]) (µi) → ti(b[i]+1) 
(λi) → yi(b[i]-1) (µi) → robot waiting in qi(b[i]-1) (ωi(b[i]-1)) → 
ui(b[i]-1) (λi) → xi(b[i]-1) (µi) → ti(b[i]) (λi) → ... → yi(n[i]) (µi) → 
robot waiting in qi(n[i]) (ωi(n[i])) → ui(n[i]) (λi) → xi(n[i]) (µi) → 
ti0 (λi)〉. The time taken by σi is ∆i = (b[i] – 1) × (4λi + 3µi ) 

+ 3µi + 2λi + ωi(n[i]) + 
[ ] 1

0

b i
ijj

ω−

=∑ , where b[i] > 1. If b[i] = 

1, ∆i = ωi0 +6λi + 5µi. Thus, we have φ(K-1)(b[K-1]) = φK0 + ∆K 
and φ(i-1)(b[i-1]) = φi(b[i]) + ∆i for 2 ≤ i ≤ K – 1. In other words, 
u(K-1)(b[K-1]) should fire ∆K time units later after the firing tK0, 
and u(i-1)(b[i-1]) should fire ∆i time units later after the firing 
of ui(b[i]) for 2 ≤ i ≤ K – 1. 

The above synchronization requirement can be 
implemented via the PN model as follows. Set the initial 
state M0 by putting tokens W0 representing virtual wafers 
into pij’s such that, 

1) For i ∈ NK-2 (K > 2), let M0(pij) = 1 for j ≠ b[i] + 1, 
M0(pi(b[i] + 1)) = 0; 

2) M0(p(K-1)j) = 1 for K >1, j ≠ b[K – 1] and j ≠ b[K – 1] 
+ 1, M0(p(K-1) (b[K-1] + 1)) = 0; M0(p(K-1)(b[K-1])) = M0(pK0) 
= 0, M0(pKj) = 1 for j ≠ 0 and j ≠ n[K], and M0(pK(n[K])) 
= 0; 

3) Further, assume that, for 2 ≤ i ≤ K, a token in pi0 
enables u(i-1)(b[i-1]) and a token in p(i-1)(b[i-1]) enables ui0; 
and 

4) For other places, M0(qij) = M0(zij) = M0(dij) = 0 with 
i∈ NK-1 and j ∈ Ωn[i], M0(qKj) = M0(dKj) = 0, M0(zKj) = 
0 with j ≠ 0, M0(zK0) = 1, M0(ri) = 1 with i∈ NK-1, and 
M0(rK) = 0. 

Thus, starting from the firing of tK0, the PN runs as 
follows. After transition tK0 fires, a token goes into pK0 (p(K-

1)(b[K-1])), which results in the firing of u(K-1)(b[K-1]). Thus, 
transition firing sequence σK-1 is executed, where u(K-1)(b[K-1]) 
fires at φ(K-1)(b[K-1]) = φK0 + ∆K = λK. Next, σK-2 is executed, 
where u(K-2)(b[K-2]) fires at φ(K-2)(b[K-2]) = φ(K-1)(b[K-1]) + ∆K-1. 
This process is propagated from CK to C1 such that φ(K-

1)(b[K-1]) = φK0 + ∆K  and φ(i-1)(b[i-1]) = φi(b[i]) + ∆i for 2 ≤ i ≤ K 
– 1, or the multiple robots in the system act synchronously 
according to the schedule. In this way, σ1 is executed at 

φ1(b[1]) = ∆K + ∆K-1+ ∆K-2 +…+ ∆2. After σ1, every time 
when u10 fires a real token W (wafer) is removed from p10. 
For each cycle performed in C1, W0-token goes into p10. 
When all W0 tokens go p10, the steady state is reached. 
Then, the system operates under the given schedule. In this 
way, the schedule is implemented. It follows from the 
implementation that the one-wafer schedule obtained is a 
backward schedule. Thus, it is easy to implement. 

 
5. ILLUSTRATIVE EXAMPLES 

 
In this section, two examples are presented to show the 

application and effectiveness of the proposed method. 
Example 1: It is from [1]. It is a 2-cluster tool composed 

of two single-arm cluster tools. The activity time is as 
follows: for C1, α10 = 0 (the loadlocks), α11 = 45s, α12 = 0 
(the outgoing buffer), α13 = 5s, α14 = 5s, λ1 = 2s, and µ1 = 
6s; and for C2, α20 = 0 (the incoming buffer), α21 = 80s, α22 
= 80s, α23 = 75s, α24 = 77s, λ2 = 3s, and µ2 = 4s. The wafer 
processing route is LL → PS11 → PS12 (PS20) → PS21 → 
PS22 → PS23→ PS24→ PS20 (PS12) → PS13 → PS14 → LL. 

For C1, we have η10 = α10 + 4λ1 + 3µ1 = η12 = α12 + 4λ1 
+ 3µ1 = 0 + 4×2 + 3×6 = 26s, η11 = 71s, η13 = η14 = 31s, 
and ψ11 = 2(n[1] + 1)(µ1 + λ1) = 2 × (4 + 1) (2 + 6) = 80s. 
Hence, Π1 = 80 and C1 is transport-bound. For C2, we have 
η20 = α20 + 4λ2 + 3µ2 = 0 + 4×3 + 3×4 = 24s, η21 = η22 = 
104, η23 = 99s, η24 = 101s, and ψ21 = 2(n[2] + 1)(µ2 + λ2) = 
2 × (4 + 1) (3 + 4) = 70s. Hence, Π2 = 104 and C2 is 
process-bound. Because Π2 > Π1 and C2 is process-bound, 
the multi-cluster is process-dominant. The lower bound of 
cycle time is Π2 = 104. 

According to the method proposed in this paper, let Θ = 
Π2 = 104. Then, we have ψ12 = Θ – ψ11 = 24s and ψ22 = Θ 
– ψ21 = 34s. This implies that we need to allocate 24s into 
ω1j’s for R1 in C1, and 34s into ω2j’s for R2 in C2, j ∈ {0, 1, 
2, 3, 4}. Then, by using Algorithm 4.1, ωij’s are obtained 
as ω10 = ω12 = ω13 = ω14 = 0, ω11 = 24, ω20 = ω21 = 0, ω22 = 
5, ω23 = 3 and ω24 =26. In this way, a one-wafer periodic 
schedule is found. With Θ = τ20 + 4λ2 + 3µ2 + ω24, τ20 = Θ 
– (4λ2 + 3µ2 + ω24) = 104 – (24 + 26) = 54 > (4λ1 + 3µ1) = 
26, the condition given in Theorem 4.3 is satisfied, or the 
schedule obtained is optimal and its cycle time is 104s, the 
lower bound, which justifies the claim given in Section I. 
For this example, it should be noticed that an optimal 4-
wafer cyclic schedule with cycle time 110.75s is obtained 
by the method given in [1]. The obtained cycle time 
outperforms the existing method [1] by 6.09%. 

Example 2: It is from [2]. It is a 3-cluster tool composed 
of three single-arm cluster tools. The activity time is as 
follows: for C1, α10 = 0 (the loadlocks), α11 = 34s, α12 = 0 
(the outgoing buffer), α13 = 31s, α14 = 4s, λ1 = 10s, and µ1 
= 1s; for C2, α20 = 0 (the incoming buffer), α21 = 82s, α22 = 
0 (the outgoing buffer), α23 = 54s, α24 = 12s, λ2 = 7s, and µ2 
= 1s; and for C3, α30 = 0 (the incoming buffer), α31 = 54s, 
α32 = 38s, α33 = 91s, α34 = 90s, λ3 = 3s, and µ3 = 1s. The 
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wafer processing route is LL→ PS11→ PS12 (PS20) → PS21 
→ PS22 → PS31 → PS32 → PS33 → PS34 → PS30 (PS22) → 
PS23→ PS24 → PS20 (PS12)→ PS13→ PS14 → LL. 

For C1, we have η10 = α10 + 4λ1 + 3µ1 = η12 = α12 + 4λ1 
+ 3µ1 = 0 + 4×10 + 3×1 = 43s, η11 = 77s, η13 = 74s, η14 = 
47s, and ψ11 = 2(n[1] + 1)(µ1 + λ1) = 2 × (4 + 1) × (10 + 1) 
= 110s. Hence, Π1 = 110 and C1 is transport-bound. For C2, 
we have η20 =α20 + 4λ2 + 3µ2 = η22 = α22 + 4λ2 + 3µ2 = 0 + 
4×7 + 3×1 = 31s, η21 = 113s, η23 = 85s, η24 = 43s, and ψ21 
= 2(n[2] + 1)(µ2 + λ2) = 2 × (4 + 1) × (7 + 1) = 80s. Hence, 
Π2 = 113 and C2 is process-bound. For C3, we have η30 = 
α30 + 4λ3 + 3µ3 = 0 + 4×3 + 3×1 = 15s, η31 = 69s, η32 = 
53s, η33 = 106s, η34 = 105s, and ψ31 = 2(n[3] + 1)(µ3 + λ3) 
= 2 × (4 + 1) × (3 + 1) = 40s. Hence, Π3 = 106s and C3 is 
also process-bound. Because Π2 > Π1, Π2 > Π3 and C2 is 
process-bound, the multi-cluster is process-dominant. 

According to the method proposed in this paper, let Θ = 
Π2 = 113. Then, we have ψ12 = Θ – ψ11 = 3s, ψ22 = Θ – ψ21 
= 33s, and ψ32 = Θ – ψ31 = 73s. This implies that we need 
to allocate 3s into ω1j’s for R1 in C1, 33s into ω2j’s for R2 in 
C2, and 73s into ω3j’s for R3 in C3, j ∈ {0, 1, 2, 3, 4}. Then, 
by using Algorithm 4.1, we can find ω10 = 0, ω11 = 3, ω12 = 
ω13 = ω14 = 0, ω20 = 0, ω21 = 33, ω22 = ω23 = ω24 =0, ω30 = 
44, ω31 = 29, and ω32 = ω33 = ω34 = 0. In this way, a one-
wafer periodic schedule is found. By (3.6), τ30 = Θ – (4λ3 + 
3µ3 + ω34) = 113 – 15 = 98 > 4λ2 + 3µ2 = 31, and τ20 = Θ – 
(4λ2 + 3µ2 + ω24) = 113 – 31 = 82 > 4λ1 + 3µ1 = 43. Hence, 
the condition given in Theorem 4.3 is satisfied, or the 
schedule obtained is optimal and its cycle time is 113s, 
which is the lower bound. For this example, in [2], an 
optimal 5-wafer periodic schedule is obtained with cycle 
time 114.8s that is greater than the lower bound. 

 
6. CONCLUSIONS 

 
With multiple robots, it is very challenging to schedule 

a multi-cluster tool to maximize the throughput. Up to now, 
there is no efficient method to find a schedule with the 
lower bound of cycle time for a multi-cluster tool. The 
industrial practitioners prefer one-wafer schedule because 
of its simplicity and easy implementation. This paper 
conducts a study on finding a one-wafer periodic schedule 
to obtain the lower-bound of cycle time for multi-cluster 
tools. It is found that, in scheduling a multi-cluster tool, the 
key question is how to determine the robots’ waiting time. 
With this in mind, a resource-oriented Petri net model is 
developed for such a system, such that the robots’ waiting 
time is well modeled. Furthermore, this model describes 
not only the behavior of its steady state but also the 
behavior of its initial and final transient processes. Based 
on the model, optimality conditions are found and the 
scheduling problem is reduced to the determination of the 
robots’ waiting time. By the derived conditions, its optimal 
one-wafer periodic schedule for a multi-cluster tool can be 
very efficiently obtained by scheduling its individual 
cluster tools one by one. Furthermore, with the same model, 
an effective method is proposed to implement the obtained 
optimal schedule. Such results are never obtained to the 
best knowledge of the authors. 

It should be pointed out that a schedule with the lower 
bound of cycle time can be found only if the conditions 
given in this paper are satisfied. Although the derived 
conditions can be satisfiable for many industrial 
applications, there may be cases such that they are not. 
Thus, it is our future work to search for an efficient 
scheduling method to obtain optimal one-wafer cyclic 
schedule for such cases. For some wafer fabrication 
processes, there are wafer residency time constraints. In 
this paper, we do not consider them. Thus, it is also our 
future work to schedule such multi-cluster tools with wafer 
residency time constraints. 
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