
Scheduling Single-Arm Multi-Cluster Tools with Lower Bound
Cycle Time via Petri Nets

QingHua ZHU and Yan QIAO

Abstract- Multi-cluster tools are widely adopted in wafer

fabrication. It is of paramount importance to schedule them to
achieve their optimal throughput. This work intends to find their
one-wafer optimal periodic schedule to attain their lower bound cycle
time. A resource-oriented Petri net model is developed to describe not
only their steady state behavior but also behavior of their initial and
final transient processes. Based on the model, this work derives the
conditions under which one-wafer cyclic schedule with lower bound
of cycle exists. Then, an algorithm is given to find it by scheduling the
individual cluster tools one by one, which requires simple calculation
only. Also, based on the Petri net model, an effective method for the
implementation of such an optimal schedule is proposed. Examples
are given to show the results.

Index Terms—semiconductor manufacturing, cluster tool,
scheduling, Petri net

1. INTRODUCTION

With the single-wafer processing technology, cluster

tools are widely adopted in semiconductor manufacturing.
A single cluster tool is composed of 4-6 process modules
(PM), one wafer-delivering robot (R), and two loadlocks
(LL) for cassette loading/unloading. The robot can be a
single or dual-arm one, and thus, the corresponding tool is
called single or dual-arm cluster tool. To improve the
productivity, many manufacturers now integrate several
cluster tools into a wafer fabrication system called a multi-
cluster tool as illustrated in Fig. 1. A multi-cluster tool
formed by K ≥ 2 single-cluster tools is called K-cluster
tools. A buffer with a highly limited wafer capacity for
holding incoming and outgoing wafers is used between two
adjacent single-cluster tools.

Extensive studies have been done in the modeling and
performance evaluation of single-cluster tools [11, 13-18,
20-22; 27-31, 36]. It is found that, for a single wafer
product processing in high-volume, a cluster tool operates
under a steady state and thus a periodic schedule is the
most desired. Under its steady state, a cluster tool operates
in one of the two regions: transport- and process-bound
ones. In the former, its robot is always busy and the system
cycle time is determined by the robot task time. In the
latter, its robot has idle time and the cycle time is decided
by the processing time in PMs. Its robot moving time from

one PM to another is often treated as a constant and is
much shorter than the wafer processing time [4, 9]. In this
case, a backward scheduling strategy is optimal for single-
arm cluster tools [3, 10, 12].

Many wafer fabrication processes require that a wafer
should be removed from a PM within a given time interval
after it is completed [9, 11]. [20, 28] studied such a
residency time constraint problem. The developed Petri net
models are independent of the wafer flow pattern and thus
reusable. By these models, the robot waiting is modeled
such that to find an optimal schedule is to simply
determine the robot waiting time. Determining it is also a
focus in scheduling a multi-cluster tool, to be shown later.

The use of multi-cluster tools in industry can be traced
back to a decade ago [7, 8]. However, a few of research
results have been reported. In [5], an event graph model, as
a special class of Petri nets, is used to describe the dynamic
behavior of a multi-cluster tool. Based on it, a search
method is proposed to find an optimal periodic schedule,
which is not necessarily a one-wafer cyclic one.

The minimal one-wafer cycle time of an individual
cluster tool is called a fundamental period (FP) [34]. To
reduce the computational complexity, without considering
the robot moving time, a decomposition method is
proposed in [33, 34]. A K-cluster tool is decomposed into
K single-cluster tools and the FP for each single-cluster
tool can be obtained as done for scheduling single-cluster
tools. Then, by analyzing time delays needed for loading
and unloading the shared buffers between the cluster tools
in a multi-cluster tool, the cycle time for the system is
determined. In this way, a feasible schedule is found.

With robot moving time considered, a polynomial
algorithm is presented to find an “optimal” multi-wafer
schedule for multi-cluster tools in [1, 2]. A key idea is to
determine the number of wafers that are concurrently
processed in each individual cluster tool in the system via a
polynomial algorithm. Next, the schedule of an entire
multi-cluster tool can be obtained by another polynomial
algorithm, regardless any individual tool is process or

This work was supported in part by the National Natural Science
Foundation of China under Grant 60974098.

Q. H. Zhu is with the School of Computer Science and
Technology, Guangdong University of Technology, Guangzhou
510006, China (e-mail: zhuqh@gdut.edu.cn).

Y. Qiao is with the Department of Industrial Engineering, School
of Electro-Mechanical Engineering, Guangdong University of
Technology, Guangzhou 510006, China (e-mail:
dr.yqiao@gmail.com).

Fig. 1. The illustration of a multi-cluster tool

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS
VOL. 17, NO. 4, DECEMBER 2012,113-123

transport-bound, representing a significant advancement in
scheduling multi-cluster tools.

Let FPi be the fundamental period of the i-th tool in a K-
cluster tool. Then, Π = max{FP1, FP2, …, FPK} is its lower
bound of cycle time. Clearly, it is the most desired if it is
scheduled such that its cycle time is Π.

The method presented in [1, 2] enable us to find an
optimal cyclic schedule but it is in general a multi-wafer
schedule. Their work did not answer under what condition
an optimal one-wafer cyclic schedule can be found with
cycle time Π. Note that a schedule of a K-cluster tool may
be optimal, i.e., its cycle time cannot be lower; but cannot
be as low as Π.

This gives rise to a question whether there is always a
backward schedule for a K-cluster tool such that the lower
bound of cycle time is reached? If not, under what
condition and how such a schedule can be found? This
work answers them for the first time.

It is known that a one-wafer cyclic schedule is easier to
understand, control, and implement to keep uniform wafer
quality [3, 6]. Hence, it is desired that a one-wafer cyclic
schedule is found for a multi-cluster tool. Further, if such a
schedule exists, it is the most desired that the lower bound
of cycle time is reached. Yi et al. [34] give the conditions
and schedules to realize Π, whereas they ignore the robots’
moving time, which is necessary to predict the throughput
from the practical view. However, when considering
robots’ moving time, Chan et al. [1] believe that, due to the
tool interactions, some sort of K-cluster tools are unlikely
to reach their Π by a one-wafer cyclic schedule. Thus, this
work attempts to find it if existing. Notice that, in cluster
tools, the robot moving time from one PM to another is
much shorter than the wafer processing time [9], a cluster
tool often operates in a process-bound region. Hence, this
paper focuses on the cases that the bottleneck single-cluster
tool in a multi-cluster is process-bound. Such a K-cluster
tool is called process- dominant. The key to schedule a
multi-cluster tool is how to coordinate the activities of its
multiple robots. The problem is modeled by a generic Petri
net (PN) model. With this model, the conditions under
which one-wafer cyclic schedule reaching cycle time Π
exists are derived. Then an efficient algorithm is given to
find it if existing.

The remainder of the paper is organized as follows.
After briefly discussing the multi-cluster tool operation, a
PN model is developed in Section 2. Section 3 presents
how the individual cluster tools should be scheduled. Then,
the optimality conditions and scheduling algorithm for a
multi-cluster tool are derived in Section 4. Illustrative
examples are given in Section 5. Section 6 presents the
conclusions

2. MODELING OF MULTI-CLUSTER TOOLS

2.1 Multi-cluster Tools

A K-cluster tool considered in this paper is composed of
single-cluster tools that have single-arm robots. According
to [1, 2], topologically, a multi-cluster tool contains no
cluster tool cycle, and is tree-like. For the sake of
simplicity in presentation, we address multi-cluster tools
with a linear topology as shown in Fig. 1. Without loss of
generality, following [1, 2], we assume that:

1) With two loadlocks, while one lot of wafers in one
loadlock is being processed, the other loadlock can
be used for loading/unloading another lot of
wafers. In this way, a multi-cluster tool can be
operated consecutively without being interrupted.
Thus, it operates in a steady state for the identical
wafer processing, or there are always wafers for
processing;

2) Tools can hold one wafer at a time without a
processing function;

3) A PM can process one wafer at a time; and
4) All the wafers in a cassette are processed in an

identical sequence specified in the recipe and visit
a PM no more than once (except for a buffer
module); and the loading, unloading, moving time
of robots and processing time of a wafer at a PM
are deterministic.

Let Nn = {1, 2, ..., n} and Ωn = {0}∪Nn. As shown in
Fig. 1, the K cluster tools forming a K-cluster tool are
denoted by C1, C2, …, and CK (K ≥ 2). A buffer module
(BM) shared by Ci-1 and Ci is called an outgoing buffer for
Ci-1 and incoming one for Ci, 2 ≤ i ≤ K. The loadlocks for
C1 can be thought of as just an incoming buffer. There are
a number of processing steps (PSs) in each individual
cluster tool. In this paper, each buffer connecting two
adjacent tools is treated as a processing step with
processing time being zero. Let n[i]+1 be the number of
steps for processing a type of wafers in Ci, including the
incoming and outgoing steps. These steps are denoted as
PSi0, PSi1, …, and PSi(n[i]) with PSi0 and PSi(b[i]) being the
incoming and outgoing steps, respectively. We use Ri to
denote the robot in Ci. Then, the routing of a wafer in a K-
cluster tool is as follows: PS10 → PS11 → …→ PS1(b[1])
(PS20) → PS21 → … → PS2(b[2]) (PS30) → …→ PS(K-1)(b[K-1])
(PSK0) → PSK1 → …→ PSK(n[K]) → … → PSK0 (PS(K-1)(b[K-

1])) → PS(K-1)(b[K-1]+1) → …→ PS30 (PS2(b[2])) → PS2(b[2]+1)
→ …→ PS20 (PS1(b[1])) → …→ PS1(n[1]) → PS10. At most of
time, a multi-cluster tool operates in a steady state. Under
such state, if the backward scheduling is applied, robot Ri
for Ci operates as follows. Robot Ri moves to PSi(n[i]) →
unloads a processed wafer from there → moves to PSi0 →
drops the wafer there → moves to PSi(n[i]-1) → unloads a
processed wafer from there → moves to PSi(n[i]) → drops
the wafer there → … → moves to PSi1 → unloads a
processed wafer from there → moves to PSi2 → drops the
wafer there → moves to PSi0 → unloads a raw wafer from
there → moves to PSi1 → drops the wafer there → moves
to PSi(n[i]). In this way, a robot cycle is completed.

2.2 ROPN for Wafer Flows

114 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2012

In this paper, the resource-oriented PN (ROPN)
developed in [19; 23-26, 32] is used to model a K-cluster
tool. It is a kind of finite capacity PN defined as PN = (P, T,
I, O, M, Ҝ), where P is a finite set of places; T is a finite set
of transitions, P ∪ T ≠ ∅, P ∩ T = ∅; I : P × T → N = {0,
1, 2, …} is an input function; O: P × T → N is an output
function; M: P → N is a marking representing the numbers
of tokens in places with M0 being the initial marking; and
Ҝ: P → {1, 2, …} is a capacity function where Ҝ(p)
represents the number of tokens that p can hold at a time.
The preset of transition t is the set of all input places to t,
i.e. t = {p: p∈P and I(p, t) > 0}. Its postset is the set of all
output places from t, i.e. t = {p: p∈P and O(p, t) > 0}.
Similarly, p’s preset p = {t∈T: O(p, t) > 0} and postset
p = {t∈T: I(p, t) > 0}. The transition enabling and firing
rules can be found in [35, 25].

As pointed out in [5], to search for an optimal steady
state schedule of a multi-cluster tool, an appropriate initial
state should be given to the model. In operating a multi-
cluster tool, there are three major states: the initial transient,
steady, and final transient states. When a multi-cluster tool
is turned on, it enters an initial transient state until a steady
state is reached. Then, the system operates in the steady
state. When the system needs to stop its operation, it enters
a final transient state. It is extremely useful to develop a
model that can describe the dynamic behavior for all three
states. Also, the wafer types to be processed by a multi-
cluster tool may be changed from time to time; and the
wafer flow patterns are changed accordingly. A model just
for the processing of a single wafer type is not reusable.
Thus, it is desired that a model is independent of wafer
flow patterns and can describe the behavior of all three
states. Such a PN model is obtained for single-cluster tools
in [20-22, 27-31] by using the ROPN modeling method
proposed in [19, 23]. This work extends the work in [20-22,
27-31] to develop a PN model that is wafer flow pattern
independent and can describe the dynamic behavior of all
three states for multi-cluster tools, which is never done to
the best knowledge of the authors.

As pointed out above, the key effort to schedule a multi-
cluster tool is to coordinate the activities of multiple robots
in loading and unloading the buffers. Thus, to model a
multi-cluster tool for the scheduling purpose, we must
model the discrete-event behavior of individual cluster
tools and buffers. We present the PN model for an
individual cluster tool first, and then develop it for a buffer.
The robot in each tool is scheduled by a backward
sequence. Multiple PMs can be configured for a step in a
tool. For simplicity of presentation, without loss of
generality, we assume that there is only one PM at a step
except Step 0 in C1 for the loadlocks that has infinite
capacity. Based on this assumption, the behavior of Step j
in Ci is modeled as follows.

As a fabrication resource, the PM for Step j in Ci with i
≠ 1 and j ≠ 0 is modeled by timed place pij with Ҝ(pij) = 1.
We use place p10 to model the loadlocks in C1 with Ҝ(p10)
= ∞. Notice that the only difference between p10 and pij

with i ≠ 1 and j ≠ 0 is their capacity. Thus, we do not need
to distinguish them when the wafer flow is modeled.
Places zij and dij are used to model that robot Ri in Ci holds
a wafer (token) for loading into pij and moving to Step j +
1 (or Step 0 if j = n[i]), respectively. According to [20, 27]
for scheduling single-cluster tools, the robot waiting
should also play an important role in developing a
scheduling method for a multi-cluster tool in this paper. To
model it, place qij is used to model that robot Ri in Ci waits
at Step j for unloading a completed wafer in PMij. Then,
transitions tij and uij are used to model that the robot Ri
loads a wafer into PMij and unloads a completed wafer
from PMij, respectively. The icons used for the places and
transitions of the model are shown in Fig. 2. By adding
arcs (zij, tij), (tij, pij), (pij, uij), (qij, uij), and (uij, dij), we
complete the modeling of Step j in Ci as shown in Fig. 3.

With the model for a processing step, we can then
model Ci as follows. Place ri is used to model Ri with Ҝ(ri)
= 1, meaning that the robot has only one arm and can hold
one wafer at a time. Transition yij is used to connect ri and
qij with an arc from ri to yij and another from yij to qij.
Finally, transition xij, j = 0, 1, 2, …, and n[i]-1, is added
between places dij and zi(j+1) with an arc from dij to xij and
another from xij to zi(j+1); xi(n[i]) is added between di(n[i]) and
zi0 with an arc from di(n[i]) to xi(n[i]) and another from xi(n[i]) to
zi0. In this way, the modeling of Ci is completed and it is
shown in Fig. 3.

To effectively operate a multi-cluster tool is to
effectively coordinate its multiple robots. Because the
buffers are the shared resources among tools/robots, the
key is effectively to schedule the activities that involve
them. Let BM shared by Ci and Ci+1 be PMi(b[i]) as the
outgoing buffer for Ci and PM(i+1)0 as the incoming buffer
or virtual loadlock for Ci+1. It is treated as a processing step
for both Ci and Ci+1 called Step b[i] for Ci and Step 0 for
Ci+1, respectively. Places pi(b[i]) and p(i+1)0 with pi(b[i]) = p(i+1)0
are used to model this BM. Then, with the PN model for a

Timed place, where pij for a PM performing wafer processing at
Step j in cluster tool Ci, qij for robot Ri waiting at Step j before
unloading a wafer from a PM at Step i, in cluster tool Ci.

ri: robot Ri in Ci available

zij and dij: non-timed place

Timed transition. tij for robot Ri loading a wafer into a PM at Step
j in Ci; uij for robot Ri unloading a wafer from a PM at Step j in Ci;
xi0 for robot Ri moving from Step 0 to 1, xij, j = 1, … n[i]-1, for
robot Ri moving from Step j to j+1 in Ci, xi(n[i]) for robot Ri
moving from Step n[i] to 0 in Ci; yi0 for Robot Ri moving from
Step 2 to 1 in Ci, yij for robot Ri Moving from Step j+2 to j, j =
1, …, n[i]-2, yi(n[i]-1) for robot Ri moving from Step 0 to n[i]-1,
and yi(n[i]) for robot Ri moving from Step 1 to n[i] in Ci.

PLACES:

TRANSITIONS:

Fig. 2. Icons used in the PN model

Zhu et al: Scheduling Single-Arm Multi-Cluster Tools with Lower Bound Cycle Time via Petri Nets 115

processing step, Step b[i] for Ci is modeled by {pi(b[i]), qi(b[i]),
zi(b[i]), di(b[i]), ti(b[i]), ui(b[i])} and Step 0 for Ci+1 by {p(i+1)0,
q(i+1)0, z(i+1)0, d(i+1)0, t(i+1)0, u(i+1)0} as shown in Fig. 4. Notice
that pi(b[i]) and p(i+1)0 are for the same BM. Thereafter, when
we refer to Step b[i] in Ci, we use pi(b[i]), while for Step 0 in
Ci+1 we use p(i+1)0. It should be pointed out that Step 0 in C1
(the loadlocks) is not shared by any other cluster tool and
there is no outgoing buffer in CK.

Up to now, we present the structure of a PN model for
the system, but not the initial marking M0. For a process-
dominant multi-cluster tool in its steady state, if every PMij
has a wafer being processed with j ≠ 0, the system reaches
its maximal throughput. Thus, we let

(1) M0(p10) = n, M0(p1(b[1])) = 0, and M0(p1j) = 1 with j ∉
{0, b[i]};

(2) For K > i ≥ 2, M0(pij) = 1 with j ∉ {0, b[i]} and
M0(pij) = 0 with j ∈ {0, b[i]};

(3) M0(pK0) = 0, M0(pKj) = 1 with j ∉ 0; and

(4) For any i ∈ NK and j, M0(qij) = M0(zij) = M0(dij) = 0,
and M0(ri) = 1 as the initial marking for the PN model.

Observing the PN model for a multi-cluster tool
developed above, at M0, any transition of yij is both process
and resource-enabled according to the transition enabling
rule. Assume that PM11 is not a BM and, at marking M0,
we fire y10, then u10, followed by x10 such that a token
moves into z11. At this marking, t11 is process-enabled, but
not resource-enabled for M0(p11) = Ҝ (p11) = 1, leading to a
dead marking. To solve this problem, we make the PN
model a controlled PN. A PN is said to be controlled if at
least one of its transitions can be controlled. A transition t
is said to be controlled if its firing is determined by a
control policy when t is both process and resource-enabled
according to the enabling rule. Thus, a transition in a
controlled PN is enabled if it is process, resource, and
control-enabled. Here, all the transitions yij are controlled
transitions. The control policy is defined as follows.

Definition 2.1: At marking M, transition yij, i ∈ NK and j
∈ Ωn[i]-1, is said to be control-enabled if M(pi(j+1)) = 0; y1(n[i])
is so if M(p1(n[i])) = 1; and yi(n[i]), i ∈ NK–{1}, is so if M(pi0)
= 0.

Thereafter, we assume that the PN model is controlled
by the control policy given in Definition 2.1 .

Observe the PN model for a buffer shown in Fig. 4.
Place pi(b[i]) (p(i+1)0) has two output transitions ui(b[i]) and
u(i+1)0. Hence, there is a conflict when there is a token in
pi(b[i]) (p(i+1)0). When a token enters pi(b[i]) by firing ti(b[i]) for
Step b[i] in Ci, it should enable u(i+1)0 for Step 0 in Ci+1.
However, when a token enters p(i+1)0 by firing t(i+1)0 for
Step 0 in Ci+1, it should enable ui(b[i]) for Step b[i] in Ci. To
avoid such a conflict, colors are introduced into the model.
We first define the color for a transition.

Definition 2.2: Define the color of transition ti as C(ti) =
{ci}.

By Definition 2.2, the colors for ui(b[i]) and u(i+1)0 are
ci(b[i]) and c(i+1)0, respectively. With Definition 2.2, we can
define the color for a token as follows.

Definition 2.3: If a token in p ∈ ti enables ti, then it has
the same color ci as ti.

For example, when a token enters pi(b[i]) by firing ti(b[i])
for Step b[i] in Ci, it has color c(i+1)0, while it enters p(i+1)0
by firing t(i+1)0 for Step 0 in Ci+1, it has color ci(b[i]) for Step
b[i] in Ci. In this way, the transition enabling and firing
rules for colored PN can be applied and the conflicts are
resolved.

The proposed PN model can also describe the behavior
of an initial and final transient process by using a special
type of tokens, called W0. For example, we initially put all
W0-tokens in pij’s to form M0 such that all tokens in the
system, except that in p10, are W0 tokens. With M0 and the
transition enabling and firing rules, the PN model can be
run by just using a backward strategy as follows to reach
the steady state. Without loss of generality, we assume that,
at M0, robot Ri for Ci is at Step n[i], or M0(qi(n[i])) = 1.

Then, for C1, the following transition firing sequence is
executed: firing transition u1(n[1]) → x1(n[1]) → t10 → y1(n[1]-1)

…

…

pi0 qi0

ti0

ui0

di0

zi0

pi1

qi1

zi1 di1

ti1 ui1

pij

qij

zij

dij

uij

tij

qi(n[i])

ui(n[i]) ti(n[i])pi(n[i])

di(n[i])
zi(n[i])

yij

yi(n[i])

yi1

yi0

ri

xi1

xi(j-1)

xi(n[i])

xi0

xij
xi(n[i]-1)

PSi0

PSi1

PSij

PSi(n[i])

n

Fig. 3. The PN model for an individual cluster tool Ci

yi(b[i])ri

ti(b[i])

y(i+1)0

zi(b[i])

 d(i+1)0

z(i+1)0
di(b[i])

pi(b[i])

ui(b[i])

qi(b[i])

q(i+1)0

u(i+1)0

p(i+1)0

xi(b[i]-1)

x(i+1)0

x(i+1)n[i+1]
xi(b[i])

t(i+1)0

ri+1

Step 0 for Ci+1

Step b[i] for Ci

Fig. 4. The PN model for a buffer

116 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2012

→ u1(n[1]-1) → x1(n[1]-1) → t1(n[1]) → …→ y1(b[1]).
At the same time, for Ci, 2 ≤ i ≤ K–1, the following

sequence is executed: ui(n[i]) → xi(n[i]) → ti0 → yi(n[i]-1) →
ui(n[i]-1) → xi(n[i]-1) → ti(n[i]) → …→ yi(b[i]).

For CK, the following sequence is executed: uK(n[K]) →
xK(n[K]) → tK0 → yK(n[K]-1) → uK(n[K]-1) → xK(n[K]-1) → tK(n[K])
→ … → yK0.

Then, for C1, after t20 is fired, the following sequence is
executed: u1(b[1]) → x1(b[1]) → t1(b[1]+1) → y1(b[1]-1) → … →
y10 → u10 (unloading a real wafer W1) → x10 → t11 (loading
W1 into Step 1) → y1(n[1]).

For Ci, 2 ≤ i ≤ K–1, after t(i+1)0 and t(i-1)(b[i-1]) are fired,
the following sequence is executed: ui(b[i]) → xi(b[i]) →
ti(b[i]+1) → yi(b[i]-1) → … → yi0 → ui0 → xi0 → ti1 → yi(n[i]).

For CK, after t(K-1)(b[K-1]) is fired, the following sequence
is executed: uK0 → xK0 → tK1 → yK(n[K]). In this way, a
marking M that is equivalent to M0 is reached. Hence, the
above process can be repeated until that all W0 tokens
come into P10. At this time, the steady state is reached.
When the system should be stopped, we change all tokens
in p10 into W0-tokens. Every time u10 fires, we unload a W0
token from p10. When all tokens in the model are type W0,
the final transient process ends. In this way, the model can
describe all three states without changing the net structure.

2.3 Modeling Activity Time

To schedule a multi-cluster tool is to determine the start

time of every activity. Thus, the model should describe the
temporal aspect of the system. In the PN model, all
transitions are for robot tasks that take time and some of
the places, such as pij and qij, are timed ones. Hence, time
is associated with both transitions and places in the model.
If time ζ is associated with transition t, firing t takes ζ time
units. If it is associated with p, a token must stay in p for at
least ζ time units before it can enable p’s output transition.
As done in [1], we assume that the time taken by robot Ri
in Ci to load/unload a wafer into/from a PM is same, as
denoted by λi. Also, the time taken by robot Ri in Ci to
move from a PM to another is same, as denoted by µi,
regardless of whether the robot carries a wafer or not. The
time taken for processing a wafer in a PM at Step j for Ci is
αij. If Step j for Ci is a buffering step, including the
loadlocks, αij = 0, and otherwise it is greater than zero. We
use ωij to denote Ri’s waiting time in qij and τij the wafer
sojourn time in a PM at Step j for Ci.

3. INDIVIDUAL CLUSTER TOOL SCHEDULING

Based on its PN model we analyze the time taken to

complete a wafer at Step j in cluster tool Ci with robot Ri’s
waiting time being considered. Without loss of generality,
we assume that for any Ci we have n[i] ≥ 2. It follows from
[20] that the time taken for processing a wafer at Step j in
Ci is

ξij = αij + 4λi + 3µi+ ωi(j-1), j ∈ Nn[i] (3.1)

For Step 0, αi0 = 0 and we have
ξi0 = 4λi + 3µi + ωi(n[i]) (3.2)

It follows from (3.1) and (3.2) that robot waiting has
effect on the processing time for completing a wafer in a
PM. By removing the robot waiting time in (3.1) and (3.2),
we have

ηij = αij + 4λi + 3µi, j ∈ Nn[i] (3.3)
and ηi0 = 4λi + 3µI (3.4)

Expressions (3.3) and (3.4) present the shortest time
needed for processing a wafer at Step j in Ci. If a wafer
stays in the PM at Step j for more than the required
processing time, or τij ≥ αij, it is still a feasible. Thus, by
replacing αij by τij ≥ αij, we have

θij = τij + 4λi + 3µi+ ωi(j-1), j ∈ Nn[i] (3.5)
and θi0 = τi0 + 4λi + 3µi + ωi(n[i]) (3.6)

Observe the PN shown in Fig. 4 for buffering Step b[i]
for Ci. When wafer Wk is loaded into pi(b[i]) by firing ti(b[i]),
Wk can be unloaded immediately by firing u(i+1)0. Similarly,
for Step 0 in Ci+1, a wafer loaded by firing t(i+1)0 can be
unloaded immediately by firing ui(b[i]). It means that the real
wafer sojourn time in a buffering step depends not only on
the schedule of cluster tool Ci but also that of Ci+1. We
define the virtual wafer sojourn time for a buffering step.
For buffering Step j in Ci, let υj1 and υj2 be the time points
when tij and uij fire for their k-th time, respectively. Next,
define τij = υj2 – υj1 as the virtual wafer sojourn time at
buffering Step j = b[i] or 0. From the viewpoint of cluster
tool Ci, it is equivalent that there is a wafer staying there
for τij time units. Thus, thereafter, when we mention wafer
sojourn time in Step j for Ci, it means the real wafer
sojourn time if it is a processing step, or the virtual wafer
sojourn time if it is a buffering step.

In the PN model shown in Fig. 3, for cluster tool Ci,
assume that marking M is reached such that M (pij) = 1, j ∈
Ωn[i] – {1}, M (qi0) = 1, and M (pi1) = 0. Then, to complete
a robot cycle in Ci, a transition firing sequence in the
backward schedule should be executed. By using the
results in [20], we have the cycle time of Ri
ψi = 2(n[i] + 1)(λi + µi) + ∑ =

][

0

in

j ijω

= ψi1 + ψi2, i∈NK (3.7)
where ψi1 = 2(n[i] + 1)(λi + µi) is the robot cycle time
without waiting and is a constant, while ψi2 = ∑ =

][

0

in

j ijω is

the robot waiting time in a cycle.
Let Πi = max{ηi0, ηi1, …, ηi(n[i]), ψi1}. If Πi = max{ηi0,

ηi1, …, ηi(n[i])}, cluster Ci is process-bound, otherwise it is
transport-bound. For each individual tool Ci, it is a serial
manufacturing process. Thus, for a one-wafer schedule in
the steady state, the productivity for each step must be
same, or the time to complete a wafer for every step in Ci
must be same. This implies that Ci should be scheduled
such that

Θi = θi0 = θi1 = … = θi(n[i])
and τij ≥ αij, i ∈ NK, j ∈ Ωn[i] (3.8)

By (3.8), during Θi, one wafer is completed in Ci, or Θi

Zhu et al: Scheduling Single-Arm Multi-Cluster Tools with Lower Bound Cycle Time via Petri Nets 117

is the cycle time for the wafer processing process. Note
that a wafer is completed during ψi. Thus, in steady state,
Ci should be scheduled such that ψi = Θi. In this case, ψi2 =
Θi – ψi1 is the Ri’s idle time for a cycle. In other words, the
sum of robot Ri’s waiting time in a cycle should be equal to
its idle time.

Assume that Πi = max{ηi0, ηi1, …, ηi(n[i])}. Then, if Θi <
Πi, it follows from (3.3) - (3.6) that there is at least j ∈ Ωn[i]
such that τij < αij. In this case, no infeasible schedule can
be found. When Πi = ψi1 and Θi < Πi, Ri is not fast enough
to complete a wafer during Θi, leading to an infeasible
schedule. However, if Θi ≥ Πi, τij ≥ αij can be satisfied by
appropriately setting ωij’s and, at the same time, Ri is fast
enough to complete a wafer in a cycle. Thus, to schedule Ci,
i ∈ NK, is to determine Θi ≥ Πi and ωij’s such that (3.8), ψi2
= Θi – ψi1, and Θi = ψi are all satisfied. In this way, given
Θi, we parameterize the schedule of individual cluster tools
by ωij’s.

4. INDIVIDUAL CLUSTER TOOL SCHEDULING

Based on the result developed in the last section, this

section presents the scheduling method for a K-cluster tool
composed of K single-cluster tools. Before doing so, we
first establish the optimality conditions.

4.1 Optimality Analysis

Let Π = max{Π1, Π2, …, ΠK} and Θ be the scheduled

cycle time of a K-cluster tool. Further, let Π = Πh, or the
FP of Ch is the largest one among the single-cluster tools
that form the K-cluster tool. Without loss of generality, we
assume that 2 ≤ h ≤ K–1. The results obtained thereafter
can be easily extended to the cases with h = 1 and h = K.
By assumption, Ch is process-bound and such a K-cluster
tool is called process-dominant multi-cluster tool. In
cluster tool Ci, there are n[i]+1 steps, including two
buffering steps in Ci (i ≠ K) numbered as 0 and b[i]. For CK,
there is only one buffering Step 0. Thus, for i ≠ K, there are
n[i] – 1 processing steps, or n[i] – 1 wafers can be
concurrently processed. For i = K, there are n[i] + 1 steps
and one buffering step, or n[i] wafers can be concurrently
processed. According to [1, 2], only when cluster tool Ci is
transport-bound, it is possible to shorten Πi by reducing the
number of wafers that are concurrently processed. This
implies that backward scheduling is optimal for Ch with Πh
= Π being the lower bound of cycle time and, under such a
scheduling strategy, there are n[h] – 1 wafers that are being
concurrently processed. Then, we have the following result.

Proposition 4.1: Under its steady state, a process-
dominant K-cluster tool has the lower bound of cycle time
of Ch, or

Θ ≥ Π = Πh (4.1)
With Proposition 4.1, we call Ch the bottleneck in the K-

cluster tool. Proposition 4.1 means that if a schedule can be

found for a process-dominant K-cluster tool such that Θ =
Π, it must be optimal in terms of its cycle time.

Proposition 4.2: If cluster tool Ci of a K-cluster tool is
scheduled such that its cycle time is Θi, the cycle times of
Ci-1 and Ci+1 must be greater than or equal to Θi, or

Θi-1 ≥ Θi (4.2)
and Θi+1 ≥ Θi (4.3)

Proof: Consider the PN model for the buffering step
shared by Ci-1 and Ci shown in Fig. 4. Assume that, at
marking M, ti0 fires and a token is put into pi0 (p(i-1)(b[i-1])).
By definition, this token enables u(i-1)(b[i-1]). Further, assume
that, at the end of ti0’s firing, a token in q(i-1)(b[i-1]) is
available. Thus, after firing ti0, u(i-1)(b[i-1]) fires immediately.
Then, although a token may enter q(i-1)(b[i-1]) again at time τ
< Θi, a token can be put into pi0 (p(i-1)(b[i-1])) by firing ti0
again only Θi time units later. Thus, the token in q(i-1)(b[i-1])
has to wait for the arrival of the token in pi0 (p(i-1)(b[i-1]))
before u(i-1)(b[i-1]) can fire again. This implies that u(i-1)(b[i-1])
can fire again at least Θi time units later. Because the
process for any individual cluster tool is a serial one, (4.2)
must hold. Similarly, we can show that (4.3) holds. 

It follows from (4.2) and (4.3) that, for Ci and Ci+1, we
have Θi+1 ≥ Θi and Θi ≥ Θi+1. In other words, Θi = Θi+1
must hold. Thus, we have the following result.

Proposition 4.3: A K-cluster tool should be scheduled
such that all individual cluster tools have the same cycle
time and it is equal to the cycle time of the K-cluster tool,
or

Θ1 = Θ2 = … = ΘK = Θ (4.4)
A K-cluster tool can be seen as a flow line with a single-

cluster tool being an operator. Thus, when a K-cluster tool
is scheduled such that (4.4) holds, its operation must be
paced. It follows form Propositions 4.1 and 4.3 that we
have the following result immediately for finding an
optimal one-wafer schedule.

Theorem 4.1: To find an optimal one-wafer periodic
schedule for a process-dominant K-cluster tool, the system
should be scheduled such that

Θ1 = Θ2 = … = ΘK = Θ = Π = Πh (4.5)
By Theorem 4.1, it means that each individual tool Ci in

a K-cluster tool should be scheduled such that Θi ≥ Πi. If
Ci is process-bound, we have Θi ≥ Πi = max{ηi0, ηi1, …,
ηi(n[i])} that can be achieved by backward scheduling with
n[i] – 1, i ≠ K (n[i] if i = K) wafers being concurrently
processed. In fact, according to the method for individual
cluster tool scheduling presented in the last section, this
can be done by appropriately determining the robot waiting
time ωij’s. If Ci is transport-bound, we have i ≠ h and Θi >
Πi = ψi1. This means that it is meaningless to shorten Πi =
ψi1 by reducing the number of wafers that are concurrently
processed in Ci. In other words, for such a case, backward
scheduling can still be applied without deteriorating the
performance of the K-cluster tool. Hence, for a process-
dominant K-cluster tool, every individual cluster tool can
be scheduled by a backward strategy. Then, according to

118 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2012

the scheduling method for individual cluster tools, to
optimally schedule a process-dominant K-cluster tool is to
determine ωij’s for i ∈ NK and j ∈ Ωn[i] such that its
multiple robots can be optimally coordinated. We have the
following result.

Theorem 4.2: Robots Ri and Ri-1 can operate
independently with the lower bound cycle time Πh, if and
only if, for Ci and Ci-1, 2 ≤ i ≤ K, the following conditions
are satisfied by determining ωij’s and ω(i-1)f’s:

1) θij = θ(i-1)f = Θ = Πh, j ∈ Ωn[i] and f ∈ Ωn[i-1]; and
2) the virtual wafer sojourn time τi0 is not less than 4λi-

1 + 3µi-1 + ω(i-1)(b[i-1]-1).
Proof: To obtain an optimal one-wafer periodic

schedule for a process-dominant K-cluster tool, (4.5) must
be satisfied. Based on the method of individual cluster tool
scheduling presented in the last section, to make Θi = Θ =
Πh, if and only if Ci is scheduled such that the time taken
for completing a wafer at every Step j, j ∈ Ωn[i], is Θi = Θ =
Πh. Thus, condition 1) should hold. According to the
method of individual cluster tool scheduling, such a
schedule is determined by the values of ωij’s and ω(i-1)f’s.
Next, we need to show the necessity and sufficiency of the
condition 2).

Necessity. In Ci, it follows from condition 1) and the
scheduling method for individual cluster tools that Θ = Πh
= τi0 + 4λi + 3µi + ωi(n[i]) holds. From the viewpoint of Ci,
τi0 = Θ – (4λi + 3µi + ωi(n[i])). With the PN model for the
buffering Step 0 in Ci, let φ1 denote the time point when
firing ti0, i.e., loading a wafer into pi0, ends, and φ2 the time
point when the first firing ui0, i.e., unloading a wafer from
pi0, starts after firing ti0. Then, it follows from the
definition of virtual wafer sojourn time in a buffer and the
schedule for Ci that we have τi0 = φ2 – φ1. Assume that,
after firing ti0, transition u(i-1)(b[i-1]) in Step b[i-1] for Ci-1
fires immediately at φ1 to unload the wafer loaded into p(i-

1)(b[i-1]) by firing ti0. By starting from time point φ1, it
undergoes the following transition firing sequence for Ri in
Ci: σ1 = <u(i-1)(b[i-1]) → x(i-1)(b[i-1]) → t(i-1)(b[i-1]+1) → y(i-1)(b[i-1]-1)
→ waiting in q(i-1)(b[i-1]-1) with ω(i-1)(b[i-1]-1) → u(i-1)(b[i-1]-1) →
x(i-1)(b[i-1]-1) → t(i-1)(b[i-1])>. Let φ3 denote the time point when
firing t(i-1)(b[i-1]) ends. After its firing, a wafer is loaded into
p(i-1)(b[i-1]) (pi0) at φ3 to enable ui0. This means that ui0 cannot
start firing at φ2, but φ3. Thus, from the viewpoint of Ci, the
time taken for completing a wafer at Step 0 is Θ’ = (φ3 – φ1)
+ 4λi + 3µi + ωi(n[i]) but not Θ = τi0 + 4λi + 3µi + ωi (n[i]).
Because the time taken by transition firing sequence σ1 is
4λi-1 + 3µi-1 + ω(i-1)(b[i-1]-1), we have φ3 – φ1 = 4λi-1 + 3µi-1 +
ω(i-1)(b[i-1]-1). Hence, assume that condition (2) is not
satisfied, or φ3 – φ1 = 4λi-1 + 3µi-1 + ω(i-1)(b[i-1]-1) > τi0, then
Θ’ > Θ, or the cycle time of Ci is greater than Θ. This
shows the necessity of condition 2).

Sufficiency. It follows from the individual cluster tool
scheduling method given in the last section and condition 1)
that every step in Ci is scheduled such that its cycle time is
Θ. Obviously, if Ci does not share any step with other
individual tools, the schedule can be executed for Ci with

cycle time Θ. This implies that we need to examine the
buffering steps in Ci only. If the schedule can be executed
for the two buffering steps, such a schedule can be
executed for Ci. With the PN model shown in Fig. 4, we
examine buffering Step b[i-1] in Ci-1. It is scheduled such
that Θ = Πh = τ(i-1)(b[i-1]) + 4λ i-1 + 3µ i-1 + ω(i-1)(b[i-1]-1). Let φ4
denote the time point when firing ti0, i.e., loading a wafer
into p(i-1)(b[i-1]), ends, and φ5 the time point when the first
firing ui0 for unloading a wafer from pi0 starts after firing ti0.
According to the schedule, we have φ5 – φ4 = τi0. After
firing ti0, one can schedule Ci-1 such that transition u(i-1)(b[i-1])
fires immediately at φ4 to unload the wafer loaded into p(i-

1)(b[i-1]) by firing ti0. By starting from time point φ4, it
undergoes transition firing sequence σ1. Let φ6 denote the
time point when firing ti0 ends. After firing ti0, a wafer is
loaded into p(i-1)(b[i-1]) (pi0) at φ6 to enable u(i-1)(b[i-1]). Notice
that the time taken for executing σ1 is 4λi-1 + 3µi-1 + ω(i-

1)(b[i-1]-1) time units, or φ6 – φ4 = 4λi-1 + 3µi-1 + ω(i-1)(b[i-1]-1).
By condition 2), we have φ5 – φ4 = τi0 ≥ 4λi-1 + 3µi-1 + ω(i-

1)(b[i-1]-1) = φ6 – φ4. This implies that φ6 ≤ φ5, or a token is
put into p(i-1)(b[i-1]) (pi0) before ui0 needs to fire. This implies
that whenever ui0 is scheduled to fire, it is enabled. Thus,
for buffering Step PSi0 the schedule is executable. If
conditions 1) and 2) hold for Ci and Ci+1, by (3.5) and (3.6),
we have τ(i+1)0 = Θ – (4λ i+1+ 3µi+1 + ω(i+1)(n[i+1])) ≥ 4λi + 3µi
+ ωi(b[i]-1) = Θ – τi(b[i]), thus, τi(b[i]) ≥ 4λi+1 + 3µi+1 +
ω(i+1)(n[i+1]). Consider the buffering Step PSi(b[i]) shared by Ci
and Ci+1, one can similarly show that, the schedule is
executable for Step PSi(b[i]). Hence, for every Ci, the
schedule is executable and the cycle time for the K-cluster
tool is Θ = Πh, i.e., Ri and Ri-1 can operate independently
with the same cycle time Πh. 

The conditions given in Theorem 4.2 can be illustrated
by Fig. 5 where τi0 is a time window with φ2 – φ1 being its
width. For Ci, Ri puts a wafer into the buffer at φ1, and then
at φ2, Ri should take a wafer away from the buffer. For Ci-1,
during the window 4λi-1 + 3µi-1 + ω(i-1)(b[i-1]-1), Ri-1 unloads a
wafer from and then puts a wafer into the buffer. Thus,
there is a wafer to be unloaded by Ri at φ2 only if τi0 ≥ 4λi-1
+ 3µi-1 + ω(i-1)(b[i-1]-1). In this way, Ri’s activities are not
affected by that of Ri-1’s. Theorem 4.2 presents the
conditions under which the lower bound of cycle time can
be obtained. However, it does not reveal how to verify the
conditions, to be discussed next.

4.2 Scheduling K-Cluster Tool

0iτ
)1]1[)(1(11 34 −−−−− ++ ibiii ωµλ

1−iC

1φ 2φ
iC

Fig. 5. Illustration of Theorem 4.2

Zhu et al: Scheduling Single-Arm Multi-Cluster Tools with Lower Bound Cycle Time via Petri Nets 119

If conditions 1) and 2) in Theorem 4.2 hold, by (3.5)
and (3.6), we have τi(b[i]) ≥ 4λi+1 + 3µi+1 + ω(i+1)(n[i+1]). It
follows from the proof of Theorem 4.2 that, if every
individual tool Ci in a K-cluster tool can be scheduled such
that conditions 1) and 2) in Theorem 4.2 are satisfied, its
multiple robots can be coordinated such that Ci, i ∈ NK,
can operate as follows: whenever Ri needs to load a wafer
into a buffering step as scheduled, the BM is idle, and also
whenever it needs to unload a wafer from a buffering step
as scheduled, there is a wafer available. In this way, we can
think that each individual tool can operate independently
without intervening each other. Notice that the conditions
given in Theorem 4.2 are functions of ωij’s. Thus, the key
question is how to determine ωij’s.

Let Θ = Πh be the lower bound of cycle time for a K-
cluster tool. For Ci, by examining the buffering Steps
PSi(b[i]) and PSi0, we have Θ = τi(b[i]) + 4λi + 3µi + ωi(b[i]-1)
and Θ = τi0 + 4λi + 3µi + ωi(n[i]). Further, let φi(b[i]) = 4λi +
3µi + ωi(b[i]-1) and φi0 = 4λi + 3µi + ωi(n[i]). To make the
conditions in Theorem 4.2 satisfied, we need to determine
ωij’s such that τi(b[i]) and τi0 are as large as possible, while
φi(b[i]) and φi0 as small as possible. Notice that small ωi(b[i]-1)
results in large τi(b[i]) and small φi(b[i]) as well. Similarly,
small ωi(n[i]) results in large τi0 and small φi0. Furthermore,
for Ci, we have Θ = ψi = 2(n[i] + 1)(λi + µi) + ∑ =

][
0

in
d idω =

ψi1 + ψi2, leading to Ri’s idle time in a cycle ψi2 = Θ – 2(n[i]
+ 1)(λi + µi) that should be allocated to robot waiting time.
A process-dominant K-cluster tool studied implies that Θ ≥
ψi1, or ψi2 ≥ 0. Hence, to optimally schedule a process-
dominant K-cluster tool is to schedule Ci by allocating ψi2
into ωij’s such that ωi(n[i]) and ωi(b[i]-1) are as small as
possible. By ψi2, Θ = τij + 4λi + 3µi+ ωi(j-1), and the
scheduling method of individual cluster tools, it is easy to
schedule Ci such that ωi(n[i]) + ωi(b[i]-1) is as small as possible.
The key issue is how to determine the value of ωi(n[i]) and
ωi(b[i]-1) to meet the conditions in Theorem 4.2.

Notice that, for CK, there is only one buffering step PSK0.
This implies that we need to make only ωK(n[K]) as small as
possible and this can be done by using the method
presented in the last section. With ωK(n[K]) determined, τK0
is known. Then, for CK-1, we can set the largest value to
ω(K-1)(b[K-1]-1) such that the conditions given in Theorem 4.2
for CK and CK-1 are satisfied. Then, we can make ω(K-1)(n[K-1])
as small as possible. In this way, we can schedule a
process-dominant K-cluster tool by scheduling the
individual cluster tool one by one as presented by
Algorithm 4.1 below. With Algorithm 4.1, its output Γ
represents whether a one-wafer cyclic schedule with cycle
time Πh is found or not.

Algorithm 4.1: Schedule a process-dominant K-cluster by
determining ωij’s.
Input: αij, λi, µi, (i ∈ Nk, j ∈ Ωn[i])
Output: ωij, Γ, Q, (i ∈ Nk, j ∈ Ωn[i])

i) Let Θ ←
1
max()ii K≤ ≤

Π , Γ ← 1, Q ← 0

ii) Determine ωKj, j ∈ Ωn[K] for RK as
1) For j ← 0 to n[K] – 1 do
2) ωKj ← min{Θ – (4λK + 3µK + αK(j+1)), Θ – 2(n[K]

+ 1)(λK + µK) –∑ −
=
1
0

j
m Kmω }

3) EndFor
4) ωK(n[K]) ← Θ – 2(n[K] + 1)(λK + µK) –

[] 1

0

n K
Kmm

ω−

=∑

5) τK0 ← Θ – (4λK + 3µK + ωK(n[K]))
iii) If K > 2, determine ωij for Ri, 1 ≤ i ≤ K–1, j ∈ Ωn[i] as.

1) i ← K – 1
2) While i ≥ 1 and τ(i+1)0 ≥ (4λi + 3µi) do
3) ωi(b[i]-1) ← min{τ(i+1)0 – (4λi + 3µi), Θ –2(n[i] +

1)(λi + µi)}
4) For j ← 0 to n[i] and j ≠ b[i] –1 do
5) ωij ← min{Θ – (4λi + 3µi + αi(j+1)), Θ – 2(n[i] +

1)(λi + µi) –∑ −

=

1

0

j

m imω }

6) EndFor
7) τi0 ← Θ – (4λi + 3µi + ωi(n[i]))
8) i ← i – 1
9) EndWhile

iv) Decide whether reaching the lower bound.
1) If i > 0 Then Γ ← 0, Q ← i
2) EndIf

By Algorithm 4.1, if it returns Γ = 1, for Ci, 1 ≤ i ≤ K –
1, ωi(n[i]) and ωi(b[i]-1) are determined such that the
conditions in Theorem 4.2 are satisfied. By Algorithm 4.1,
if it returns Γ = 0, its output Q represents that the
conditions given in Theorem 4.2 for CQ and CQ+1 are
violated, i.e., τ(Q+1)0 ≥ (4λQ + 3µQ) does not hold. Thus, if it
returns Γ = 1, a solution is obtained such that the
conditions in Theorem 4.2 are satisfied. Thus, we have the
following result immediately.

Theorem 4.3: If a one-wafer periodic schedule with the
lower bound Πh of cycle time for a process-dominant K-
cluster tool is found by Algorithm 4.1 with its output Γ = 1,
the schedule is optimal in terms of cycle time.

It follows from Algorithm 4.1 that the robots’ waiting
time determines if the condition given Theorem 4.3 can be
satisfied. If it is not correctly set, such a schedule cannot be
found even if it exists. If Algorithm 4.1 returns Γ = 0, it
implies that τ(i+1)0 ≥ (4λi + 3µi) for i ∈ NK-1 does not hold
even if τ(i+1)0 (i ∈ NK-1) is maximized by Algorithm 4.1, i.e.,
it is impossible to find the robots’ appropriate waiting time
to satisfy the conditions in Theorem 4.2. We have the
following corollary.

Corollary 4.1: If Algorithm 4.1 is applied to a process-
dominant K-cluster tool with its output Γ = 0, there is no 1-
wafer cycle schedule reaching the lower bound of its cycle
time.

Obviously, the computational complexity of Algorithm

120 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2012

4.1 is O(K). Thus, it is extremely efficient and represents a
significant progress in this research field.

4.3 Schedule Implementation

By Algorithm 4.1, when Ri in Ci loads a wafer into PSi0

by firing ti0, u(i-1)(b[i-1]) fires immediately to unload this
wafer by robot Ri-1 in Ci-1. This means that the multiple
robots cannot act independently, but should act
synchronously. Let φK0, the starting time point of firing tK0
in CK, be the datum for the activities of RK. For i ∈ NK-1, let
φi(b[i]), the starting time point for firing ui(b[i]) in Ci, be the
datum for the activities of Ri. For CK, assume that the
initial operation starts from firing tK0 to put a token into pK0,
which takes time λK. Let ∆K = λK. For i ∈ NK-1, between the
firings of ui(b[i]) and ti0, the following transition firing
sequence is executed:

σi = 〈firing ui(b[i]) (with time λi) → xi(b[i]) (µi) → ti(b[i]+1)
(λi) → yi(b[i]-1) (µi) → robot waiting in qi(b[i]-1) (ωi(b[i]-1)) →
ui(b[i]-1) (λi) → xi(b[i]-1) (µi) → ti(b[i]) (λi) → ... → yi(n[i]) (µi) →
robot waiting in qi(n[i]) (ωi(n[i])) → ui(n[i]) (λi) → xi(n[i]) (µi) →
ti0 (λi)〉. The time taken by σi is ∆i = (b[i] – 1) × (4λi + 3µi)

+ 3µi + 2λi + ωi(n[i]) +
[] 1

0

b i
ijj

ω−

=∑ , where b[i] > 1. If b[i] =

1, ∆i = ωi0 +6λi + 5µi. Thus, we have φ(K-1)(b[K-1]) = φK0 + ∆K
and φ(i-1)(b[i-1]) = φi(b[i]) + ∆i for 2 ≤ i ≤ K – 1. In other words,
u(K-1)(b[K-1]) should fire ∆K time units later after the firing tK0,
and u(i-1)(b[i-1]) should fire ∆i time units later after the firing
of ui(b[i]) for 2 ≤ i ≤ K – 1.

The above synchronization requirement can be
implemented via the PN model as follows. Set the initial
state M0 by putting tokens W0 representing virtual wafers
into pij’s such that,

1) For i ∈ NK-2 (K > 2), let M0(pij) = 1 for j ≠ b[i] + 1,
M0(pi(b[i] + 1)) = 0;

2) M0(p(K-1)j) = 1 for K >1, j ≠ b[K – 1] and j ≠ b[K – 1]
+ 1, M0(p(K-1) (b[K-1] + 1)) = 0; M0(p(K-1)(b[K-1])) = M0(pK0)
= 0, M0(pKj) = 1 for j ≠ 0 and j ≠ n[K], and M0(pK(n[K]))
= 0;

3) Further, assume that, for 2 ≤ i ≤ K, a token in pi0
enables u(i-1)(b[i-1]) and a token in p(i-1)(b[i-1]) enables ui0;
and

4) For other places, M0(qij) = M0(zij) = M0(dij) = 0 with
i∈ NK-1 and j ∈ Ωn[i], M0(qKj) = M0(dKj) = 0, M0(zKj) =
0 with j ≠ 0, M0(zK0) = 1, M0(ri) = 1 with i∈ NK-1, and
M0(rK) = 0.

Thus, starting from the firing of tK0, the PN runs as
follows. After transition tK0 fires, a token goes into pK0 (p(K-

1)(b[K-1])), which results in the firing of u(K-1)(b[K-1]). Thus,
transition firing sequence σK-1 is executed, where u(K-1)(b[K-1])
fires at φ(K-1)(b[K-1]) = φK0 + ∆K = λK. Next, σK-2 is executed,
where u(K-2)(b[K-2]) fires at φ(K-2)(b[K-2]) = φ(K-1)(b[K-1]) + ∆K-1.
This process is propagated from CK to C1 such that φ(K-

1)(b[K-1]) = φK0 + ∆K and φ(i-1)(b[i-1]) = φi(b[i]) + ∆i for 2 ≤ i ≤ K
– 1, or the multiple robots in the system act synchronously
according to the schedule. In this way, σ1 is executed at

φ1(b[1]) = ∆K + ∆K-1+ ∆K-2 +…+ ∆2. After σ1, every time
when u10 fires a real token W (wafer) is removed from p10.
For each cycle performed in C1, W0-token goes into p10.
When all W0 tokens go p10, the steady state is reached.
Then, the system operates under the given schedule. In this
way, the schedule is implemented. It follows from the
implementation that the one-wafer schedule obtained is a
backward schedule. Thus, it is easy to implement.

5. ILLUSTRATIVE EXAMPLES

In this section, two examples are presented to show the

application and effectiveness of the proposed method.
Example 1: It is from [1]. It is a 2-cluster tool composed

of two single-arm cluster tools. The activity time is as
follows: for C1, α10 = 0 (the loadlocks), α11 = 45s, α12 = 0
(the outgoing buffer), α13 = 5s, α14 = 5s, λ1 = 2s, and µ1 =
6s; and for C2, α20 = 0 (the incoming buffer), α21 = 80s, α22
= 80s, α23 = 75s, α24 = 77s, λ2 = 3s, and µ2 = 4s. The wafer
processing route is LL → PS11 → PS12 (PS20) → PS21 →
PS22 → PS23→ PS24→ PS20 (PS12) → PS13 → PS14 → LL.

For C1, we have η10 = α10 + 4λ1 + 3µ1 = η12 = α12 + 4λ1
+ 3µ1 = 0 + 4×2 + 3×6 = 26s, η11 = 71s, η13 = η14 = 31s,
and ψ11 = 2(n[1] + 1)(µ1 + λ1) = 2 × (4 + 1) (2 + 6) = 80s.
Hence, Π1 = 80 and C1 is transport-bound. For C2, we have
η20 = α20 + 4λ2 + 3µ2 = 0 + 4×3 + 3×4 = 24s, η21 = η22 =
104, η23 = 99s, η24 = 101s, and ψ21 = 2(n[2] + 1)(µ2 + λ2) =
2 × (4 + 1) (3 + 4) = 70s. Hence, Π2 = 104 and C2 is
process-bound. Because Π2 > Π1 and C2 is process-bound,
the multi-cluster is process-dominant. The lower bound of
cycle time is Π2 = 104.

According to the method proposed in this paper, let Θ =
Π2 = 104. Then, we have ψ12 = Θ – ψ11 = 24s and ψ22 = Θ
– ψ21 = 34s. This implies that we need to allocate 24s into
ω1j’s for R1 in C1, and 34s into ω2j’s for R2 in C2, j ∈ {0, 1,
2, 3, 4}. Then, by using Algorithm 4.1, ωij’s are obtained
as ω10 = ω12 = ω13 = ω14 = 0, ω11 = 24, ω20 = ω21 = 0, ω22 =
5, ω23 = 3 and ω24 =26. In this way, a one-wafer periodic
schedule is found. With Θ = τ20 + 4λ2 + 3µ2 + ω24, τ20 = Θ
– (4λ2 + 3µ2 + ω24) = 104 – (24 + 26) = 54 > (4λ1 + 3µ1) =
26, the condition given in Theorem 4.3 is satisfied, or the
schedule obtained is optimal and its cycle time is 104s, the
lower bound, which justifies the claim given in Section I.
For this example, it should be noticed that an optimal 4-
wafer cyclic schedule with cycle time 110.75s is obtained
by the method given in [1]. The obtained cycle time
outperforms the existing method [1] by 6.09%.

Example 2: It is from [2]. It is a 3-cluster tool composed
of three single-arm cluster tools. The activity time is as
follows: for C1, α10 = 0 (the loadlocks), α11 = 34s, α12 = 0
(the outgoing buffer), α13 = 31s, α14 = 4s, λ1 = 10s, and µ1
= 1s; for C2, α20 = 0 (the incoming buffer), α21 = 82s, α22 =
0 (the outgoing buffer), α23 = 54s, α24 = 12s, λ2 = 7s, and µ2
= 1s; and for C3, α30 = 0 (the incoming buffer), α31 = 54s,
α32 = 38s, α33 = 91s, α34 = 90s, λ3 = 3s, and µ3 = 1s. The

Zhu et al: Scheduling Single-Arm Multi-Cluster Tools with Lower Bound Cycle Time via Petri Nets 121

wafer processing route is LL→ PS11→ PS12 (PS20) → PS21
→ PS22 → PS31 → PS32 → PS33 → PS34 → PS30 (PS22) →
PS23→ PS24 → PS20 (PS12)→ PS13→ PS14 → LL.

For C1, we have η10 = α10 + 4λ1 + 3µ1 = η12 = α12 + 4λ1
+ 3µ1 = 0 + 4×10 + 3×1 = 43s, η11 = 77s, η13 = 74s, η14 =
47s, and ψ11 = 2(n[1] + 1)(µ1 + λ1) = 2 × (4 + 1) × (10 + 1)
= 110s. Hence, Π1 = 110 and C1 is transport-bound. For C2,
we have η20 =α20 + 4λ2 + 3µ2 = η22 = α22 + 4λ2 + 3µ2 = 0 +
4×7 + 3×1 = 31s, η21 = 113s, η23 = 85s, η24 = 43s, and ψ21
= 2(n[2] + 1)(µ2 + λ2) = 2 × (4 + 1) × (7 + 1) = 80s. Hence,
Π2 = 113 and C2 is process-bound. For C3, we have η30 =
α30 + 4λ3 + 3µ3 = 0 + 4×3 + 3×1 = 15s, η31 = 69s, η32 =
53s, η33 = 106s, η34 = 105s, and ψ31 = 2(n[3] + 1)(µ3 + λ3)
= 2 × (4 + 1) × (3 + 1) = 40s. Hence, Π3 = 106s and C3 is
also process-bound. Because Π2 > Π1, Π2 > Π3 and C2 is
process-bound, the multi-cluster is process-dominant.

According to the method proposed in this paper, let Θ =
Π2 = 113. Then, we have ψ12 = Θ – ψ11 = 3s, ψ22 = Θ – ψ21
= 33s, and ψ32 = Θ – ψ31 = 73s. This implies that we need
to allocate 3s into ω1j’s for R1 in C1, 33s into ω2j’s for R2 in
C2, and 73s into ω3j’s for R3 in C3, j ∈ {0, 1, 2, 3, 4}. Then,
by using Algorithm 4.1, we can find ω10 = 0, ω11 = 3, ω12 =
ω13 = ω14 = 0, ω20 = 0, ω21 = 33, ω22 = ω23 = ω24 =0, ω30 =
44, ω31 = 29, and ω32 = ω33 = ω34 = 0. In this way, a one-
wafer periodic schedule is found. By (3.6), τ30 = Θ – (4λ3 +
3µ3 + ω34) = 113 – 15 = 98 > 4λ2 + 3µ2 = 31, and τ20 = Θ –
(4λ2 + 3µ2 + ω24) = 113 – 31 = 82 > 4λ1 + 3µ1 = 43. Hence,
the condition given in Theorem 4.3 is satisfied, or the
schedule obtained is optimal and its cycle time is 113s,
which is the lower bound. For this example, in [2], an
optimal 5-wafer periodic schedule is obtained with cycle
time 114.8s that is greater than the lower bound.

6. CONCLUSIONS

With multiple robots, it is very challenging to schedule

a multi-cluster tool to maximize the throughput. Up to now,
there is no efficient method to find a schedule with the
lower bound of cycle time for a multi-cluster tool. The
industrial practitioners prefer one-wafer schedule because
of its simplicity and easy implementation. This paper
conducts a study on finding a one-wafer periodic schedule
to obtain the lower-bound of cycle time for multi-cluster
tools. It is found that, in scheduling a multi-cluster tool, the
key question is how to determine the robots’ waiting time.
With this in mind, a resource-oriented Petri net model is
developed for such a system, such that the robots’ waiting
time is well modeled. Furthermore, this model describes
not only the behavior of its steady state but also the
behavior of its initial and final transient processes. Based
on the model, optimality conditions are found and the
scheduling problem is reduced to the determination of the
robots’ waiting time. By the derived conditions, its optimal
one-wafer periodic schedule for a multi-cluster tool can be
very efficiently obtained by scheduling its individual
cluster tools one by one. Furthermore, with the same model,
an effective method is proposed to implement the obtained
optimal schedule. Such results are never obtained to the
best knowledge of the authors.

It should be pointed out that a schedule with the lower
bound of cycle time can be found only if the conditions
given in this paper are satisfied. Although the derived
conditions can be satisfiable for many industrial
applications, there may be cases such that they are not.
Thus, it is our future work to search for an efficient
scheduling method to obtain optimal one-wafer cyclic
schedule for such cases. For some wafer fabrication
processes, there are wafer residency time constraints. In
this paper, we do not consider them. Thus, it is also our
future work to schedule such multi-cluster tools with wafer
residency time constraints.

REFERENCES
[1] W. K. Chan, J. G. Yi, and S. W. Ding, “Optimal Scheduling of

Multicluster Tools with Constant Robot Moving Times, Part I: Two-
Cluster Analysis,” IEEE Transactions on Automation Science and
Engineering, vol. 8, no.1, pp. 5-16, Jan. 2011.

[2] W. K. Chan, J. G. Yi, S. W. Ding, and D. Z. Song, “Optimal
Scheduling of Multicluster Tools with Constant Robot Moving
Times, Part II: Tree-Like Topology Configurations,” IEEE
Transactions on Automation Science and Engineering, vol. 8, no.1,
pp. 17-28, Jan. 2011.

[3] M. Dawande, C. Sriskandarajah, and S. P. Sethi, “On Throughput
Maximization in Constant Travel-time Robotic Cells,” Manufacture
Service Operation Manage, vol. 4, no. 4, pp. 296–312, 2002.

[4] M. Dawande, “Throughput optimization in robotic cells.” Vol. 101.
Springer, 2007

[5] S. W. Ding, J. G. Yi, and M. T. Zhang, “Multicluster Tools
Scheduling: an Integrated Event Graph and Network Model
Approach,” IEEE Transactions on Semiconductor Manufacturing,
vol. 19, no.3, pp. 339 - 351, Aug. 2006.

[6] I. Drobouchevitch, S. P. Sethi, and C. Sriskandarajah, “Scheduling
Dual Gripper Robotic Cells: One-unit Cycles,” European Journal of
Operational Research, vol. 171, no. 2, pp. 598–631, Jun. 2006.

[7] D. Jevtic, “Method and Apparatus for Managing Scheduling a
Multiple Cluster Tool,” in European Patent. vol. 1,132,792(A2),
2001.

[8] D. Jevtic and S. Venkatesh, “Method and Apparatus for Scheduling
Wafer Processing within a Multiple Chamber Semiconductor Wafer
Processing Tool Having a Multiple Blade Robot,” in U.S. Patent.
vol. 6,224,638, 2001.

[9] J.-H. Kim, T.-E. Lee, H.-Y. Lee, and D.-B. Park, “Scheduling
analysis of timed-constrained dual-armed cluster tools,” IEEE
Transactions on Semiconductor Manufacturing, vol. 16, no. 3, pp.
521-534, Aug. 2003.

[10] T.-E. Lee, H.-Y. Lee, and Y.-H. Shin, “Workload balancing and
scheduling of a single-armed cluster tool,” in Proceedings of the 5th
APIEMS Conference, Gold Coast, Australia, pp. 1–15, 2004.

[11] T.-E. Lee and S.-H. Park, “An extended event graph with negative
places and tokens for timed window constraints,” IEEE
Transactions on Automation Science and Engineering, vol. 2, no. 4,
pp. 319-332, Oct. 2005.

122 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 17, NO. 4, DECEMBER 2012

[12] M.-J. Lopez and S.-C. Wood, “Systems of multiple cluster tools -
configuration, reliability, and performance,” IEEE Transactions on
Semiconductor Manufacturing, vol. 16, no. 2, pp. 170-178, May
2003.

[13] T. L. Perkinson, P. K. MacLarty, R. S. Gyurcsik, and R. K. Cavin,
III, “Single-wafer cluster tool performance: An analysis of
throughput,” IEEE Transactions on Semiconductor Manufacturing,
vol. 7, no.3, 369-373, Aug. 1994.

[14] T. L. Perkinson, R. S. Gyurcsik, and P. K. MacLarty, “Single-wafer
cluster tool performance: An analysis of the effects of redundant
chambers and revisitations sequences on throughput,” IEEE
Transactions on Semiconductor Manufacturing, vol. 9, pp. 384-400,
Aug. 1996.

[15] Y. Qiao, N. Q. Wu, and M. C. Zhou, Real-time scheduling of single-
arm cluster tools subject to residency time constraints and bounded
activity time variation, IEEE Transactions on Automation Science
and Engineering, vo. 9, no. 3, pp. 564-577, Jul. 2012.

[16] Y. Qiao, N. Q. Wu, and M. C. Zhou, Petri net modeling and wafer
sojourn time analysis of single-arm cluster tools with residency time
constraints and activity time variation, IEEE Transactions on
Semiconductor manufacturing, vol. 25. no. 3, pp. 432-446, Aug.
2012.

[17] Y. Qiao, N. Q. Wu, and M. C. Zhou, “A Petri net-based novel
scheduling approach and its cycle time analysis for dual-arm cluster
tools with wafer revisiting,” to appear in IEEE Transactions on
Semiconductor manufacturing.

[18] S. Venkatesh, R. Davenport, P. Foxhoven, and J. Nulman, “A steady
state throughput analysis of cluster tools: Dual-blade versus single-
blade robots,” IEEE Transactions on Semiconductor Manufacturing,
vol. 10, no. 4, pp. 418–424, Nov. 1997.

[19] N. Q. Wu, “Necessary and Sufficient Conditions for Deadlock-free
Operation in Flexible Manufacturing Systems Using a Colored Petri
Net Model,” IEEE Transaction on Systems, Man, and Cybernetics,
Part C, vol. 29, no. 2, pp. 192-204, 1999.

[20] N. Q. Wu, C. B. Chu, F. Chu, and M. C. Zhou, “A Petri net method
for schedulability and scheduling problems in single-arm cluster
tools with wafer residency time constraints,” IEEE Transactions on
Semiconductor Manufacturing, vol. 21, no. 2, pp. 224 - 237, May
2008.

[21] N. Q. Wu, F. Chu, C. Chu, and M. Zhou, “Petri Net-Based
Scheduling of Single-Arm Cluster Tools With Reentrant Atomic
Layer Deposition Processes,” IEEE Transactions on Automation
Science and Engineering, vol. 8, no. 1, pp. 42-55, Jan. 2011.

[22] N. Q. Wu, F. Chu, C. B. Chu, and M. C. Zhou, “Petri net modeling
and cycle time analysis of dual-arm cluster tools with wafer
revisiting,”, to appear in IEEE Transactions on Systems, Man, &
Cybernetics: Systems.

[23] N. Q. Wu and M. C. Zhou, “Avoiding deadlock and reducing
starvation and blocking in automated manufacturing systems based
on a Petri net model,” IEEE Transactions on Robotics and
Automation, vol. 17, no. 5, pp. 658-669, Oct. 2001.

[24] N. Q. Wu and M. C. Zhou, “Modeling and deadlock control of
automated guided vehicle systems,” IEEE/ASME Transactions on
Mechatronics, vol. 9, no. 1, pp. 50-57, 2004.

[25] N. Q. Wu and M. C. Zhou, System modeling and control with
resource-oriented Petri nets, CRC Press, Taylor & Francis Group,
New York, October 2009.

[26] N. Q. Wu and M. C. Zhou, “Process vs resource-oriented Petri net
modeling of automated manufacturing systems,” Asian Journal of
Control, vol. 12, no. 3, pp. 267-280, 2010.

[27] N. Q. Wu and M. Zhou, “Analysis of wafer sojourn time in dual-
arm cluster tools with residency time constraint and activity time
variation,” IEEE Transactions on Semiconductor Manufacturing,
vol. 23, no. 1, pp. 53-64, Feb. 2010.

[28] N. Q. Wu and M. C. Zhou, “A closed-form solution for
schedulability and optimal scheduling of dual-arm cluster tools
based on steady schedule analysis,” IEEE Transactions on

Automation Science and Engineering, vol. 7, no. 2, pp. 303-315,
Apr. 2010.

[29] N. Q. Wu and M. C. Zhou, “Modeling, analysis and control of dual-
arm cluster tools with residency time constraint and activity time
variation based on Petri nets,” IEEE Transactions on Automation
Science and Engineering, vol. 9, no. 2, pp. 446-454, Apr. 2012.

[30] N. Q. Wu and M. C. Zhou, “Schedulability analysis and optimal
scheduling of dual-arm cluster tools with residency time constraint
and activity time variation,” IEEE Transactions on Automation
Science and Engineering, vol. 9, no. 1, pp. 203-209, Jan. 2012.

[31] N. Q. Wu, M. C. Zhou, F. Chu, and C. B. Chu, “A Petri-net-based
scheduling strategy for dual-arm cluster tools with wafer revisiting,”
to appear in IEEE Transactions on Systems, Man, & Cybernetics:
Systems.

[32] N. Q. Wu, M. C. Zhou, and G. Hu, “One-step look-ahead maximally
permissive deadlock control of AMS by using Petri net,” to appear
in ACM Transactions on Embedded Computing Systems.

[33] J. Yi, S. Ding, and D. Song, “Steady-state throughput and
scheduling analysis of multi-cluster tools for semiconductor
manufacturing: A decomposition approach,” in Proceedings of 2005
IEEE International Conference on Robotics and Automation, pp.
292–298, 2005.

[34] J. G. Yi, S. W. Ding, D. Z. Song, and M. T. Zhang, “Steady-State
Throughput and Scheduling Analysis of Multi-Cluster Tools for
Semiconductor Manufacturing: A Decomposition Approach,” IEEE
Transactions on Automation Science and Engineering, vol. 5, no. 2,
pp. 321-336, Apr. 2008.

[35] M. C. Zhou and M. D. Jeng, “Modeling, Analysis, Simulation,
Scheduling, and Control of Semiconductor Manufacturing Systems:
A Petri Net Approach,” IEEE Transactions on Semiconductor
Manufacturing, vol. 11, no. 3, pp. 333-357, Aug. 1998.

[36] W. M. Zuberek, “Timed Petri nets in modeling and analysis of
cluster tools,” IEEE Transactions on Robotics Automation, vol. 17,
no. 5, pp. 562-575, Oct. 2001.

QingHua Zhu received the B.S. degree
in computer science from Jiangxi Normal
University, Nanchang, China, in 1997,
and the M.S. degree in transportation
information engineering and control from
East China Jiao Tong University,
Nanchang, China, in 2003.
He had been with Jiangxi University of
Finance and Economics, China, for three
years. In 2003, he joined Guangdong
University of Technology, where he is an

Assistant Professor with the Department of Computer
Engineering, School of Computer Science and Technology,
Guangdong University of Technology, Guangzhou, China. His
current research interests include discrete event systems,
production planning and scheduling, and Petri nets.

Yan Qiao received the B. S. degree in
Industrial Engineering from Guangdong
University of Technology, Guangzhou,
China, in 2009. Since 2009, he has been a
doctoral graduate student at the
Department of Industrial Engineering,
School of Electro-Mechanical Engineering,
Guangdong University of Technology. He
was the 2011 IEEE CASE QSI Best
Application Paper Award Finalist and
received the Best Student Paper Award in

2012 IEEE ICNSC. His research interests include discrete event
systems, production planning, Petri nets, scheduling and control.

Zhu et al: Scheduling Single-Arm Multi-Cluster Tools with Lower Bound Cycle Time via Petri Nets 123

	Introduction
	Modeling of Multi-cluster Tools
	Individual Cluster Tool Scheduling
	Individual Cluster Tool Scheduling
	Illustrative Examples
	Conclusions
	References

