
Proactive Probing and Probing On Demand in Service Fault Localization

Zhixiong CHEN

Abstract- This paper proposes Proactive Probing and Probing
on Demand (pPOD) approach to monitor the health of a
serviceable component system (SCS) proactively and to localize
faulty serviceable component on demand. In general, many high-
level web services have dependency on other web services and on
the basic network infrastructure. The health of such high-level
services relies on the health of all these services and the network
infrastructure. Therefore, we can select a small set of such high
level web services and monitor them by probing their health
periodically. This application-level performance monitoring
mechanism can greatly reduce the overhead of satisfying service-
level objectives. When abnormal events occur, we are able to
follow the dependency path to localize possible failures based on
the outcomes of incremental on demand probing . The proposed
approach effectively reduces the resource and traffic cost in
performance monitoring and speeds up the diagnosis process
when compared with traditional performance monitoring and
fault localization methods.

Index Terms— Performance Monitoring; Fault Localization;
Proactive Probing; Reactive Diagnosis; Spatial and Temporal
locality.

1. INTRODUCTION

User-perceived web service performance is an important
part of performance management in a web service
environment. These services are usually end-to-end user
applications and depend on other services and on network
infrastructures in which services are hosted. For example, a
simple online inventory inquiry request depends on many
hardware and software components such as user-side PC
machine, a browser, Domain Name Service (DNS), routers
and hubs, server side machines, web servers, application
servers and database servers. Any abnormal performance of
these components will cause on the user side a longer response
time or even failure. By monitoring the quality and
performance of these web services, we can actually monitor all
the elements upon which these services depend.

When an abnormal or failure event happens, we, however,
would like to diagnose each component along the path in order
to localize a faulty component or components.

This technology is generally termed as probing technology.
The challenge is to find a reasonable small set of probes for
monitoring and make fault localization as fast as possible.

In [1], Kliger et al propose a coding approach to network
event correlation. They view events as system-generated
messages encoded in sets of alarms that the events cause, and
the problem of correlation as decoding these alarms to identify
the message. The coding technique proceeds in two phases,
offline codebook selection and online decoding. In the
codebook selection phase, a subset of alarms is selected as a
codebook that optimally pinpoints problems and achieves a
level of noise insensitivity. The small set of alarms is to be

monitored constantly. When alarms are observed, the decoding
phase starts. These alarms are analyzed to identify the
problems that cause them. The coding approach reduces the
complexity of real-time correlation analysis through
preprocessing of the event knowledge model.

More specifically, the codebook design problem is to find a
minimal codebook such that the radius, defined as the one half
of the minimal distance among pairs of codes, is bigger than a
given level of distinction. In a deterministic model, the
distance between two code vectors),..,,(21 naaaa  and

),...,,(21 nbbbb  is defined as

  kk badbad ,),(.
The Hamming distance is a special case. In a probabilistic
model, a log-likelihood measure can be used, that is

 









k

k

b
a

bad lg),(

with 0
0
0

lg 





 and 1
0

lg 







n
for 0n .

The problem of decoding is to find for a given alarm vector
a the problem codes P that minimize the correlation
measure),(pa for any Pp . The correlation measure is an
asymmetric mapping that distinguishes a lost symptom from a
spurious one. In the deterministic model, a lost symptom
correlation measure can be set as  )1,0(and a spurious
symptom as  )0,1(. And the correlation measure),(pa
can be set as the form   kk bad , as before. In the probabilistic

model, a correlation of occurrence aa lg),1( while that

of non-occurrence    aa  1lg,0 . We can get the

corresponding logarithmic form of correlation measure.
In [2,3], Brodie et al explore the probing technology to

network fault localization. They use dependency matrix
between network nodes and probes to describe diagnostic
power and define diagnostic ability PH of a set of
probes P as

 


k

i
i

i n
n
nPH

1
lg

where n is the total number of nodes, k is the group numbers
induced by P , that is, nodes in each group could not be
distinguished further through P , and in is the number of

nodes in group i . It is a form of conditional entropy in
information theory [4] and can be used to define next most
informative probe, the smaller the value of PH , the better
the probe. Based on the diagnostic ability, they propose two
algorithms, a subtractive approximation algorithm and additive
algorithm to construct pre-planned locally optimal set of
probes.

In the diagnostic phase, they extend dependency matrix
with uncertainties into two layer noisy-AND Bayesian
network that encodes probabilistic dependencies between the
possible faults and symptoms. The first layer is of n un-

Manuscript received on December 11, 2004; revised on February 1,
2005. The author is with the Division of Mathematics and Computer
Information Science, Mercy College, 555 Broadway, Dobbs Ferry,
NY10522, USA (e-mail: zchen@mercy.edu).

INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS
VOL. 10, NO. 2, JUNE 2005, 107-113

observed Boolean variables  nXXXX ,...,, 21 for nodes

while the second layer is of m observed Boolean variables
 mTTTT ,...,, 21 for probes. The joint probability  txP , is

defined as

    
n

i

m

j
jji tpatPxPtxP

1 1
|,

 


where  ixP is the prior probability,  jj tpatP | is the

conditional probability distribution of probe iT given
the node set jtpa to which iT links directly. If l is the
leak probability and iq is the link probability, the lost
and spurious probability are

  


n

x
in

i

qlxxtP
0

1 1,...,1

and
  lxxtP n  11,...,10 1

The diagnosis task is to find the maximum probable
explanation for a given probe outcome.

In [5], Steinder and Sethi map layered model for alarm
correlation into brief networks and present three algorithms,
bucket-tree elimination algorithm, polytrees algorithm and
iterative most probable explanation algorithm, for end to end
service failure diagnosis. More references about performance
monitoring and fault localization including using neuronal
network and support vector machine can be found in [6-10]

In this paper, we define a Probing Service (PS) as a web
service that is able to run a specific test transaction, to record
the test result, and to pass the result to a designated location
called Probing Service Management Station (PSMS). Probing
services are deployed in a Probing Service Outlet (PSO) in
which a PS can be run under a regular schedule or invoked
anytime. For example, an http request PS at certain PSO wraps
a standard http request into a web service that sends out the
http request, gets the response, records the response time and
passes the result to a PSMS.

The generic architecture of probing service monitoring and
diagnosis is depicted in Fig. 1 in which services component
model is illustrated in Fig. 2.

The generic enterprise system services (ESS) model in Fig.
2 is a brief reference model [11]. It has application services
such as portal server and messaging server. The main
functionality of this layer is to provide application integration
and user collaboration. The next layer is middleware services
such as web server, application server, access manager and
messaging queue. The main functionality of this layer is to
provide business-ready infrastructure. The foundation layer is
the operating system and network support.

In Fig. 1, we use ‘services’block to denote an ESS that can
be in one location or in geometrically dispersed locations. PS
in PSO type I (PSO-I) is able to access ESS directly, usually
inside the intranet while PS in PSO type II (PSO-II) accesses
ESS through internet cloudy. PSO-I plays an administrative
role while PSO-II mimics user perceived applications. PSs in
both PSOs send response results to PSMS in which the
response results are stored and analyzed. The PSMS has a
database to store huge data, a data regulator to unify data
presentation and to regulate time and distance measuring
issues from different PSOs, a situation manager to cope with

event uncertainty, a reference engine to analyze and diagnose
events, an invoking channel to invoke a PS in local or remote
PSO, and an alerting service to send alarms to system
administrators.

Figure 1: Generic Architectures of Probing Services

Figure 2: Generic Enterprise System Service Components.

We propose a three-stage approach called Proactive
Probing and Probing on Demand, or simply pPOD approach.
The first stage of the pPOD is to select PSOs and PSs. The
goal is to monitor a set of components using as few PSs as
possible. The information collected from these PSs does not
serve the purpose to diagnose the nature of the problem later
on. They simply monitor the health of the underlying
components and report events. This de-coupling between
monitoring and fault localization saves machine resources and
traffic overload dramatically since in reality, majority time is
spent in the monitoring phase. The second stage is offline rule
development. The goal is to provide a strategy in case one PS
or several PSs report events. It must consider all available PS
pools when designing a faulty detection strategy. The last
stage is to diagnose and localize faults using incremental
probing on demand. It may start one or more PSs to get more
information. The execution is based on the rules set by the
second stage.

The paper is organized as follows. Section 2 presents
several crucial concepts including a serviceable component
system, probing services, events, and dependency matrix
between a serviceable component system and a probing
service set. Section 3 describes the pPOD approach and

Internet

PSMS
Data regulator
Situation Manager
Reference engine
Invoking Channel
Alerting Service
Database

PSO-II

PSO-I

Services

Middleware Service (Web Server,
application server, AccessManger,

Message Queue, Data Center)

Application Services (Portal, messaging)

Network (TCP, HTTP)
OS

Chen: Proactive Probing and Probing on Demand in Service Fault Localization 108

explains the additive-pruning algorithm as an approximation to
the exhausted algorithm. Section 4 discusses empirical
experimental results. The final section is devoted to the
discussion of the future work.

2. PROBING SERVICE AND SERVICEABLE COMPONENT

This section intends to clarify some main concepts used
throughout the paper.

2.1 A Serviceable Component, Probing Service and Event
A serviceable component (SC) is a piece of hardware or

software that is able to perform a specific task. For example, a
cable is a hardware component that makes connection; an
account entity bean in application server is a software
component that manipulates and writes data into a relational
database table; and a php is an application software component
that is used for web interactive environment.

We may deal with a serviceable component that is actually
a cluster of components among which we are unable to
distinguish each individual component. For example, to handle
high volume of traffic, some popular web sites use a proxy
server followed a cluster of web servers. The proxy server
allocates incoming requests to each individual web server
based on some schedulers such as round robin or resource
usage. In this situation, we could not distinguish each web
server from application perspective. Therefore we treat the
cluster of web servers as one serviceable component. Similarly,
in a re-usable object case, a pool of objects may be treated as a
component since there is no way to distinguish each object.

An event is an abnormal condition that a PS is able to
detect. For example, timeout for an http request PS is an event.
An event from a PS is only an indicator that some components
along the path may not be in good condition. An event can be
transient or consistent. Usually we ignore the transient events
because they could not be re-produced. In our several month
field tests, we found that from time to time an http request PS
would report a burst of response time over threshold but the
SCs the PS has passed through were actually in good health.
They were transient events. A response time recording
segment of an http request PS is shown in Fig. 3 in which the
time frame is about 36 hours and the regular probing period is
5 minutes. The x-axis is time frame and y-axis is response time.
The majority response time is around 100ms. Some transient
timeout events were recorded.

Figure 3: Response Time Sample from a PS

In this paper we do not use terms like symptoms and
problems. The events are more or less symptoms while the
SCs the problems.

A Probing Service (PS) is a web service that is able to run a
specific test transaction, to record the test result, and to pass
the result to a designated location called Probing Service

Management Station (PSMS). In other words, a PS
implements probing, logging, alerting and messaging
interfaces, and supports direct interactions with other software
applications using XML-based messages via Internet-based
protocols. Its interfaces and binding are capable of being
defined, described and discovered by XML artifacts and can
be identified uniquely by a URI [12].

A PS can be run under a regular schedule or can be
invoked anytime. The data format from any PS is in XML
format that can be transformed into any data format by using
XSL.

A PS can be deployed in any web environment that runs
web service. The place is called Probing Service Outlet (PSO).
If a PSO is within an intranet, it is termed as PSO-I while
PSO-II for PSO outside an intranet. The reasons to have two
types of PSO are due to the access rights and knowledge of
targeted IT infrastructure topology. A PS in PSO-I can have
administrative right to access a SC and is able to know the
detailed topology of SCs. For instance, a lotus note PS in PSO-
I is able to know the exact path to a lotus server, and can
access lotus database and user setting directly. A PS in PSO-II
usually has limited access right to fulfill its task. It could have
an educated guess of the underlying topology. For example,
through a different http URI and response time pattern, an http
PS could guess that the request probably passes over an
application server and/or a database server. Furthermore, a PS
in PSO-I could get more useful information than that in PSO-II.
For example, a traceroute PS in PSO-II usually could not get
much information because such information is usually not
accessible to outsiders.

A PS has to utilize and pass over several SCs in order to
finish a specific task. For example, an http request inquiring
the inventory of certain die-cast bike model might start from a
browser in a local PC, use local or remote DNS, pass routers,
and bridges to a remote computer, a web server and a
presentation server, an application server with the inventory
session bean and a database server. The success of such PS
implies that all the SCs in between work properly.

Because all the SCs of a PS include a local computer to a
target service, we further divide SC into two classes, Targeted
Serviceable Component (TSC) and Necessary Serviceable
Component (NSC). The goal of probing is to TSC. In the field
test, through different Probing Service Outlet (PSO), we can
assume that all NSCs work properly.

The Probing Service Management Station (PSMS) is a
central processing server that comprises, as depicted in Fig. 1,
a data regulator, a situation manager, a reference engine, an
invoking channel, an alerting service and a database. Raw data
from various PSs located at different PSOs are sent to the
PSMS. Because these data come from different PSs and
different locations, they might have different data
representation format and have mingled time stamp. The data
regulator transforms them into a standard data format using
eXtensible Stylesheet Language Transformations (XSLT) [17]
and adds proper time marker to these data. These data are
stored to the database and at the same time are being processed
by the situation manager. The situation manager makes a
decision if a detected event should trigger diagnosis process or
not. As we can see from Fig. 3 once a while a longer response
time or even failure while the underlying SCs are actually in
good health. The exact reason is hard to tell sometimes. We
simply state they are due to measurement error and/or network

109 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS VOL. 10, NO. 2, JUNE 2005

uncertainty. In such a transient situation, there is no need to
trigger diagnosis process. Actually once we add a rule like
“triggering diagnosis if the same event reported more than
twice consecutively”, we reduce unnecessary diagnosis about
90%. A situation manager is also useful in dealing with
scheduled machine maintenance, notified machine updates,
webpage changes, etc. The reference engine is used by PSMS
in diagnosis. It can be deterministic rule engine or a magic
statistical processing engine. We use simple rule engine at first.
We plan to use combination of both deterministic and
statistical mechanisms. During the diagnosis, one or more PSs
may have to be invoked to get more information. The job is
done by an invoking channel. Any diagnosis results will be
sent to designated places like administrator email account or
management console via the alerting service.

In short, the PSMS collects all the data from various PSs in
different PSOs, monitors the health of the TCSs and makes
diagnosis if events are detected. It can make on demand
probing if extra information is needed during the diagnosis
process. The advantages of PS-PSO-PSMS over a standalone
software application like EPP [13] are the simplification of
management, ease of scheduling, and short cycle of learning
and development.

We should notice that not all the PS get responses instantly.
Some more sophisticated PSs need correlated work to draw
conclusions. For example, in a business process [14], an order
transaction can have multiple players who input their
outcomes in days or even months. The success or failure of
these probe services depend on the outcome of each player.
Our PS includes such orchestrated business processes.

We denote a PS and its covered SCs as a PS

path,  
pskps cccC ,...,, 21 where ic is one of the SCs passed

by the PS. All possible PS paths together form a PS impact
space  psCS  .

2.2 Dependency Matrix and Serviceable Component
System

We can associate every PS with a N1 vector where N
is the total number of SCs. The vector element value depends
on whether the corresponding component is on the PS path or
not. If it is, the value is set to 1, and otherwise to 0. We use

psV to denote the vector that corresponds to a ps probe

service.
If we line up every such vector together, row by row, we

get a dependency matrix (DM) M that tells a relation between
PS and SC. A matrix row-switching operation corresponds to
PS exchanging while a column-switching one corresponds to
SC swapping.

Experienced Information Technologies (IT) specialists
usually are able to pin down that certain SCs have close
relations among themselves and are independent of others. If
we put these SCs together in a dependency matrix, we can get
a block dependency matrix like the following.























kM

M
M

M

000
0...00

000
000

2

1

Each iM is called a strong dependency matrix (SDM). We

can deal with SDM one by one in a probing and diagnosis
process. We call the group of SCs corresponding to iM a
Serviceable Component System (SCS), denoted
as  NcccC ,..., 21 . We will focus on an SCS for the rest of
the paper.

As the complexity of IT systems grow tremendously, a
machine-automated separation process is certainly desirable. It
turns out that by using matrix notation and matrix row-switch
and column-switch operations, a machine can transform a DM
into a block DM easily. The process that separates a SC set
into several disjoint sets is called a de-coupling process.

3. PROACTIVE PROBING AND PROBING ON DEMAND

In this section, we will formulate the problem and explain
the approach to solve them. The approach is termed as
Proactive Probing and Probing on Demand, simply, pPOD
approach. The pPOD method has three stages, proactive
probing in which a PS-PSO-PSMS system is selected, offline
fault localization in which strategies for fault detection and
localization are developed and some new PSs might be added
to the available PS pools in order to increase the diagnosis
power, and probing on demand fault diagnosis in which
incremental results are fed into the PSMS reference manager
for possible conclusions.

3.1 Proactive Probing
We denote the targeted serviceable components (TSCs)

defined in Section 2.1 as
 nTSC cccC ,...,, 21 .

and probing services (PS) that pass over all the TSC as
 mpppP ,...,, 21 .

The set TSCC can be determined by a service level
agreement and administrators while the PSs may be deployed
in different PSOs. We do not label these PSs differently
because we assume that the information passed into PSMS
shows where they are located.

Usually we have one main PSO-I that may run in the same
machine as PSMS, a PSO-II outside intranet and sometimes
backup PSO-I or PSO-II for recovery and fault localization if
needed. In practice, each PSO stores data locally. When there
is an event, it reports to the PSMS for further instructions.

The existence of such P is obvious since we can use one
PS to cover one TSC in theory. Put all such P together to form
a probing service impact space PP ~ . Therefore the problem

for PS selection is to find a PP
~* such that

PP
PP ~

* min


 . (1)

If we use an exhaustive search algorithm, we can prove that
the complexity is exponential. Intuitively from its dependency

matrix, there are going to be at most n2 PSs. For each PP
~

 ,

the number of PS, P , will be from 1 to n2 . So the number of

P
~

is around
n

n

n

nn
22

2
2...

2

2

2

1





























. So its complexity

will be exponential.

Chen: Proactive Probing and Probing on Demand in Service Fault Localization 110

We can use the simple linear additive-pruning algorithm

(APA) to get an approximation to *P , as shown in Block 1.

Input: A TSC
Initialization: Set P empty

Set DM (Dependency Matrix) null
Repeat the following until the TSC is empty

Take out one SC from TSC;
Make one PS that passes over the SC
Add the PS to P
Add the PS dependency row to the DM
Take out SCs from TSC that the PS has covered
If the row some rows in DM

Remove these rows
Removes the corresponding PSs from P

Output: P and DM
Block1: Additive Pruning Algorithm

Here we make a PS instead of going through the search of
all available PSs. The operation of two vectors is defined as

uv iff)()(iuiv  for each element. We can see that the
complexity is)(nO .

As we see, both the solution *P and its approximation
solution are not unique. We can use locality concept [16] to
measure how good a P is. Let ir be the number of PSs in

P passing over the ith SC in TSC. We define the Probing
Service Locality as

  


n

i
iTSC r

nm
CPL

1

211, .

The smaller the locality, the better the set P . For example, for
20n and 3m , if all 1ir , the locality is 0.3333; if all

2ir , the locality is 0.6667; and if 1or , 31 r and all the

rest 2ir , the locality is 0.6749.

In practice, we take an approach called “Incubation”that
gathers all available PSs to cover all SC in TSC and records
the corresponding metrics such as response time. The process
gives us good candidates for P as well as its metrics for
alarming threshold determination. We can use some help tools
such as web site logger (pageDetailer [15], for example)
during the process.

The incubation process sometimes can reveal regular server
maintenance schedule. This is useful in avoiding unnecessary
diagnosis. The incubation process sometimes could even give
us some indications of hidden or new SCs not listed in TSC
originally. Because of the dynamic nature of application
environment, some SCs such as a router, machine or
application server may be added dynamically to a SCS without
notifying its system administrators. Through various response
time patterns (such as longer time consistently) and PSs (like
traceroute), we are able to guess a hidden SCs and reverse the
possible component layouts.

Lastly the incubation process can also help us identify new
PS that needs to be added to the PS pool. For example, during
a review session in the incubation process, we found that there
was no PS to monitor the compliance of the policy: “no
employees should open their schedules to the public in their
lotus notes”. Thus we added a new lotus PS. Depending on the
size of the TCS, the incubation process could take as long as

several weeks in order to establish a baseline for PS selection
and reference measurement metrics.

3.2 Offline Analysis
Assume that we have selected a P that passes over all SC

in TSCC and has the NSC (see Section 2.1), denoted as

 kNSC dddC ,..., 21 .
The proactive probing process actually monitors both

TSCC and NSCC , or NSCTSC CCC  . For each PS, we can
write a causality line as the order of the PS passing over,
symbolically as

 iiiiiii cccdddp 
2121



where all
kid belong to TSCC and all

kic to TSCC . The

operation 21 cc  means before passing over 2c , ip has to

pass over 1c first. If ip returns a successful response, all the
SCs it passed over are in good health. Otherwise, they are all
possible candidates for further diagnosis. We can reasonably

assume that  iik
d

1
in NSCC are in good health. Our job is to

focus on  i
ik

c
1

. The problem now is to design a strategy that

uses as few available PSs as possible to decide possible faulty

SCs in  i
i k

c
1

.

The approach we use is similar to a binary search algorithm.
It tries to find an available PS that stops right at the middle of
the causality line or close to the middle of the causality line.
Because we are doing offline proactive analysis, we have time
even to develop a PS that ends around the middle of the
causality line if there is no suitable PS. The algorithm is given
in block 2 if we assume that there is only one faulty SC in the
causality line.

Input: A main causality line MCL= i
ik

c
1

Initialization: Set the possible faulty set F =  i
i k

c
1

Repeat the following until the MCL is empty
or there is no PS that could stop between the MCL

Find a PS that ends jc , around the middle of MCL,

If the result from the PS is good
Set MCL as 1jc to the end

Remove c from F all the way to jc

Else
Set MCL as from the beginning to 1jc

Remove c from F from jc to the end

Output: F
Block2: Diagnosis Algorithm

The complexity of the algorithm is close to  )log(nO . The
output F can have unique SC or several SCs. The reason to
have several SCs is because there might be no suitable PS that
can penetrate the causality segment by the SCs.

If we remove the assumption of only one faulty SC, the
algorithm will be more complicated. We can not “remove c
from F from jc to the end”in the above algorithm if the result

from the PS is not good. We might need a PS from different

111 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS VOL. 10, NO. 2, JUNE 2005

PSO to bypass the path from the beginning to jc . But this is

not always possible in the field test.

3.3 Probing on Demand
An event reported to PSMS by a PS does not necessarily

trigger a diagnosis process.
An event can be transient. In our field test, we observed

many transient events among them some were very regular
like a burst every two hours. They simply come and go
without revealing what is happening behind.

An event can be consistent but not necessarily caused by a
faulty SC. For example, regular server maintenance could
cause a consistent event. Actually our probing to a Lotus notes
server disclosed its maintenance schedule, starting every
Thursday 5 am and lasted about average 7 minutes. Certainly 7
minutes is not very accurate number because of the various
natures of the maintenance and the gap between two
consecutive probings.

A situation manager in PSMS takes care of the uncertainty
and regular machine and server maintenance. It can eliminate
many unnecessary diagnoses. One simple way to deal with
uncertainty is to ask the same PS who has reported an event to
perform the task again to see if the event is consistent or not,
or ask other PLO to perform the same task.

Now, for a consistent event, the diagnosis basically follows
the rules developed during the offline analysis. Based on the
return value, it decides the next move.

Unlike event correlation [1] and intelligent probing [2], the
diagnosis starts without information provided by other PSs.
Whenever an event is reported, the proactive probing process
is stopped.

4. EXAMPLES AND RESULTS

We investigate empirically the relation between PS size
and TSCC size, and the difference between the two algorithms,
Exhausted Search Algorithm (ESA) and the Additive-Pruning
Algorithm (APA). Moreover, we also investigate the average
diagnosis execution time units based on the PS set obtained via
APA.

For each number TSCCn  , we generate n PSs that cover

all the SCs in TSCC . The number of SC passed over by each
PS is uniformly distributed between 1 and 60% of n. The
algorithms described in section 3.1 are executed. The process
is repeated fifty times for each SC size n . Fig. 4 shows the
results. The x-axis is TSCC size (n) and the y-axis is PS set
size (m). The dotted lines are the results from ESA and the
solid lines from APA. The standard deviation bars are also
drawn along with the average results.

From Fig. 4, we see that the number of PSs needed to
monitor the TSCC is quite small. For example, when the size

of TSCC is 150, the number of PS needed is only 6. Moreover,

the difference between ESA and APA is around two PSs. We
can thus conclude that APA is a good approximation to ESA.

Now we use the PS set obtained from APA as a base to do
offline diagnosis analysis discussed in Section 3.2. Fig. 5
shows the average diagnosis execution time unit that is
equivalently the number of PS needed to diagnose a faulty SC.

Here we assume that there is only one faulty SC. The x-axis is
the TSCC size and the y-axis is the number of PS needed in
order to be able to localize a faulty SC. We also draw the
function of  TSCC2log as a dashed line. It serves as a
reference line. As we can see that all the numbers of PS
needed to diagnose are below the line. That means that the
number is smaller than the logarithm of TSCC size. The
difference is about two execution time units.

Figure 4: Computing PS set size via ESA and APA

Figure 5: Average Diagnosis Execution Time Units

We also used the PS-PSO-PSMS system for a several
month field test. The configuration included three lotus notes
servers (one lotus notes server was within the intranet, one
lotus was also within the intranet but severed as a backup, the
third one was outside the intranet) and portal servers as
interface between lotus notes servers and web access, their
basic operations such as open, close and send a file, a
document retrieve and edit. We used pageDetailer with SSL
capability to get all possible http requests. The probing period
was set as five minutes. We revealed the regular machine
maintenance schedules, periodical transient timeout events
with period approximately two hours (which we did not find
reasonable explanations such as caching invalidation), one

Chen: Proactive Probing and Probing on Demand in Service Fault Localization 112

unavailable document event and two downtime events of the
outside Lotus notes server that lasted about one half hour. Our
results matched the administrators’working log quite well.

5. Discussions

In this paper, we have proposed an Additive Pruning
Algorithm for proactive probing and a diagnosis algorithm for
fault localization. It reduces the probe service numbers
dramatically while at the same time increases the effectiveness
of diagnosis since the process is dealt with only a subset of the
whole TSCC .

Our ongoing work includes applying these algorithms to
more sophisticated IT systems; handling dynamic nature of
SCS by allowing components to be added or removed
dynamically; and revealing more quantity measurement to
understand the nature of different probe services. We also like
to predict events from user-perceived performance pattern
change. The work is more based on our working experience.
We need to perform in depth mathematical analysis of the
proposed method and its effectiveness.

REFERENCES

[1] Kliger, S., Yemini, S., Yemini, Y., Ohsie, D. and Stolfo. S., “A
coding approach to event correlation,”in Proceedings of the
Fourth International Symposium on Integrated Network
Management, 1995, pp. 266 –277.

[2] Brodie, M., Rish, I., and Ma, S., “Intelligent probing: A Cost-
Efficient Approach to Fault Diagnosis in Computer Networks,”
IBM Systems Journal, Vol 41 , No. 3., 2002, pp. 372-385

[3] Rish, I., Brodie, M., Odintsova, N., Ma, S. and Grabarnik, G.,
“Real-time Problem Determination in Distributed Systems using
Active Probing”, In Proceedings of 2004 IEEE/IFIP Network
Operations and Management Symposium (NOMS 2004), Seoul,
Korea, 2004, Vol1, pp 133-146. See more discussions at
http://www.research.ibm.com/people/r/rish/

[4] Cover, T. and Thomas. J., “Elements of Information Theory,”
New York, John Wiley & Sons, 1991.

[5] Steinder, M., and Sethi, A., “End-to-end Service Failure
Diagnosis Using Belief Networks,” in Proc. NOMS-2002, 8th
International IFIP/IEEE Symposium on Network Operations and
Management, Florence, Italy, pp. 375-390, April 2002

[6] Steindera, M., and Sethi, A., “A survey of fault localization
techniques in computer networks,” Science of Computer
Programming, Vol 53, 2004, pp. 165–194.

[7] Hood, C., and Ji, C., “Proactive network fault detection”. In Proc
of INFOCOM ‘97, Sixteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Driving the
Information Revolution, 1997, pp. 1147-1156

[8] Kandula, S., Shaikh, A. and Nahum, E., “Integrated Network
Performance Diagnostics,”NYMAN Workshop, New York, NY,

September 2002. An Electronic copy can be obtained at
http://www.nyman-workshop.org/2002/papers/s2343.pdf

[9] Papavassiliou, S., and Pace M., “From service configuration
through performance monitoring to fault detection:
implementing an integrated and automated network maintenance
platform for enhancing wide area transaction access services”,
International Journal of Network Management, Vol. 10, No 5,
2000, pp. 241 –259.

[10] Samanta, B., Al-Balushi, K., and Al-Araimi, S., “Artificial
neural networks and support vector machines with genetic
algorithm for bearing fault detection”, Engineering Applications
of Artificial Intelligence, Vol 16, No 7-8, 2003, pp.657-665

[11] Sun Java Enterprise System 2005Q1 Technical Overview,
http://docs.sun.com/source/819-0061/index.html, Chapter 2, Java
Enterprise System Solution Architectures.

[12] Web Services Description Requirements,
http://www.w3.org/TR/ws-desc-reqs/, Section 2, Defini tions.

[13] Frenkiel, A. and Lee, H., “EPP: A Framework for Measuring the
End-to-End Performance of Distributed Applications,”
Proceedings of Performance Engineering 'Best Practices'
Conference, IBM Academy of Technology, 1999.

[14] Business Process Execution Language for Web Services
(BPEL4WS), Version 1.1, May 2003, Electronic version can be
obtained from
ftp://www6.software.ibm.com/software/developer/library/ws-
bpel.pdf

[15] pageDetailer, http://www.research.ibm.com/pagedetailer/
[16] Salisbury, C., Chen, Z. and Melhem, R., “Modeling

Communication Locality in Multiprocessors,”J. Parallel and
Distributed Computing, Vol 56, pp. 71-98, 1999

[17] http://www.w3.org/TR/xslt

Zhixiong Chen received his PhD degree in
Mathematics and Master’s degree in
Computer Science from the University of
Pittsburgh in 1997. He received his Master
and Bachelor degrees in Mathematics from
Shanghai Jiao Tong University in 1989 and

1996, respectively. Dr Chen is an Associate Professor in the
Division of Mathematics and Computer Information Science at
Mercy College, Dobbs Ferry, New York. He worked over six
years in IBM Transarc lab and IBM T J Watson Research
Center doing distributed application research, design and
implementation prior to his present position. His research
interests include autonomic computing such as multi-layer
application measuring, monitoring and fault localization using
various analytic, fuzzy and statistical methods, security,
parallel computing and neuronal modeling. He had published
numerous journal papers, conference papers and technical
reports. He is a member of IEEE and MAA.

113 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS VOL. 10, NO. 2, JUNE 2005

