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Abstract- We present an agent-based model of cultured lung alveo-

lar type II (AT II) cells and simulation results that provide early in-
sight into generative principles underpinning alveolar morphogenesis 
in 3D cell cultures.  We also describe a supporting framework and 
system-level agents that manage simulation experiments.  The AT II 
cell-mimetic analogue comprises discrete components that represent 
cells and basic parts composing cell cultures.  Cells are represented as 
quasi-autonomous agents that act based on decision logic and a set of 
operating principles articulated as axioms.  By adhering strictly to 
those principles, cell agents self-organize and develop into multi-cell 
structures that resemble alveolar-like cysts in vitro.  While it is pre-
mature to assign a specific biological mapping to the in silico operat-
ing principles, the findings enforce the idea that complex morphoge-
netic phenomena are a consequence of adherence to a small set of 
epigenetic principles.  We expect more advanced adaptations will 
provide a rigorous platform to unravel the mechanistic bases of al-
veolar development and regeneration. 

 
Index Terms—Multi-agent, self-organization, autonomous systems 

design, agent-directed, simulation framework, behavior program-
ming, systems biology 

 
1. INTRODUCTION 

 
Alveolar morphogenesis is a fundamental feature of 

mammalian lung development and repair [1].  It comprises 
various processes by which terminal airway cells self-
organize into primary functional lung units.  An essential, 
yet poorly understood, aspect of alveolarization concerns 
how the various cell processes and actions give rise to ste-
reotypical cyst formations.  What are the basic principles 
of cell operation that govern alveolar growth?  How do 
they come about?  Can the morphogenic principles be 
translated into therapeutic strategies for lung injury or dis-
ease?  Here we introduce an agent-based, discrete event 
simulation model and supporting methods to probe possi-
ble answers.  Albeit simplistic, the model can reproduce 
basic developmental attributes and offers a logic-based, 
cell-level explanation of alveolar growth in vitro. 

Pulmonary alveoli consist of type I and II cells [2].  Al-
veolar type I cells are flat and provide about 95% of alveo-
lar surface for respiration.  Alveolar type II (AT II) cells 
are approximately cuboidal and cover the remaining sur-

face.  While they provide little respiratory surface, AT II 
cells are essential for alveolar function, homeostasis, and 
regeneration [3], so they are one of the most studied cell 
types in lung and alveolar morphogenesis research. 

Most ex vivo studies of alveolar development have re-
lied on two-dimensional (2D) culture methods, even 
though they are incapable of emulating the physiological 
three-dimensional (3D) environment.  There are no me-
thods to isolate and grow whole alveoli ex vivo, however 
different 3D methods have been applied successfully to 
grow AT II cells into alveolar-like organoids [4][5].  In [5] 
the cells form alveolar-like cysts (ALCs) and secrete sur-
factant into the cyst lumen similar to the in vivo condition.  
ALCs grow exclusively by cell aggregation and subsequent 
hollowing (cell-cell separation).  Apparently, ALC growth 
requires cellular mechanisms distinct from those engaged 
in cyst development of other epithelial cell types [6].  That 
finding suggests that their development might involve cell 
operations that are somewhat different from those identi-
fied previously [7].  A major goal of this study is to begin 
elucidating an operating theory about principles that drive 
AT II cyst growth ex vivo. 

Object-oriented, discrete simulation modeling methods 
like cellular automata [8], cellular Potts models [9], and 
agent-based models (ABMs) [10] have gained popularity 
in studies that directly address cell-level mechanics of an-
imal development.  One example is a multi-scale ABM that 
simulates mesoendoderm migration of Xenopus explant ex 
vivo [11].  Another addresses mesenchymal cell behavior 
and molecular dynamics of in vitro precartilage cell con-
densation [12].  Bodenstein et al. [13] developed a multi-
cell model to explain a critical event in early chick em-
bryogenesis.  Galle et al. [14] reported an ABM simulating 
epithelial cell colony growth, with an explicit representa-
tion of physicochemical determinants of cell survival and 
proliferation.  Another study incorporated a mathematical 
model of growth factor diffusion and signaling into an es-
tablished 2D epithelial cell ABM to examine proliferative 
behaviors under different conditions [15].  Notably, Grant 
et al. [7] developed a Madin-Darby canine kidney (MDCK) 
epithelial cell mimetic analogue, which provided useful in-
sight into cell-level mechanisms that account for multiple 
phenotypes in four different culture conditions. 

The object-oriented class of models and methods are 
what Fisher and Henzinger [16] have referred to as execut-
able biology.  They comprise discrete components and me-
chanisms (in the form of executable algorithms) that map 
logically to wet-lab counterparts.  We refer to such a sys-
tem as an analogue to help distinguish this class of models 
from traditional, inductive models.  Analogues are ex-
ecuted and measured in the same way as their referent.  
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Data accumulated during executions are compared against 
data taken from the referent.  When an analogue fails vali-
dation, we revise it, validate it against its predecessor 
(cross-model validation) and then against referent 
attributes.  When satisfaction is achieved, a case can be 
made for concretizable software to wet-lab mappings at 
both behavioral and mechanistic levels.  The methods pro-
vide for establishment of plausible reductive hierarchies 
between lower level mechanisms and higher-level pheno-
mena by growing useful, more detailed software analogues 
from a predecessor. 

The analogues differ from conventional models of in-
ductive type.  An inductive model is usually built by first 
analyzing data, creating a mapping between the envisioned 
system structure and components of the data, and then 
representing the generation of those data components with 
mathematical equations.  Inductive analytical models test 
hypotheses about data.  The method relies heavily on the 
researcher’s knowledge combined with induction.  When 
successful, it creates models that can extrapolate beyond 
the original data, making the method ideal for prediction.  
The inductive and executable biology methods present dif-
ferent yet complementary approaches to exploring explana-
tions of biological phenomena. 

Here, we adapt, refine, and advance current ABM me-
thods, drawing on those articulated by Grant et al. [7], to 
develop and begin validating analogues of alveolar-like 
cyst (ALC) growth in 3D cell cultures.  The analogues are 
a multi-agent system composed of quasi-autonomous cell 
agents and passive objects that represent the extracellular 
cell culture composition within a software framework sup-
ported by other agents [17].  Internal cell state and neigh-
boring object configuration determine simulated cell action.  
Simple decision logic and cell agent axioms define the pre-
conditions and corresponding cell actions.  Following a 
simple rule set, cell agents self-organize into stable cyst-
like structures and mimic key growth characteristics of cul-
tured AT II cells.  

 
2. BIOLOGY 

 
Pulmonary alveoli (~250 µm in diameter; human) have 

an elaborate anatomy consisting of an epithelium, base-
ment membrane, and surrounding capillary network [2].  
The alveolar epithelium encloses a hollow air space, called 
lumen.  Three cell types compose the epithelium: type I 
and II pneumocytes, and macrophages.  AT I cells provide 
thin, flat surface through which oxygen diffusion occurs.  
AT II cells have multiple functions essential to alveolar 
homeostasis.  The alveolar basement membrane and asso-
ciated extracellular matrix (ECM) surround and anchor the 
epithelium to interstitial connective tissue.  Densely net-
worked capillaries cover the alveoli to form a blood-air 
barrier, which prevents blood from entering alveoli while 
permitting oxygen flow. 

AT II cells are considered defenders of the alveolus [3].  
Their primary function is to produce and secrete pulmo-
nary surfactant along the inner alveolar lining.  Surfactant, 

composed of lipids and proteins, helps maintain proper sur-
face tension and prevents alveolar collapse during ventila-
tion.  It also plays important roles in fluid balance and host 
defense.  

 
3. CONCEPTUAL MODEL 

 
We first catalogued basic AT II growth attributes in 3D 

matrix, and then narrowed the list into an initial set of tar-
get attributes for model development and validation.  Sub-
cellular molecular details were presumed to conflate into 
cell level events and processes.  Doing so allowed us to de-
fine attributes that map directly to experimental in vitro 
observations and measurements.  Next we conceptually 
discretized cultures so that only those components essential 
in achieving the targeted attributes were represented.  Spe-
cifically, the in vitro cultures were represented as having 
five components: cells, clusters, ECM (matrix hereafter), 
ECM-free region (free or luminal space hereafter), and a 
space to contain them.  Hereafter, we use small caps when 
describing model components and processes to distinguish 
them clearly from their in vitro counterparts.  CELL 
represents an individual AT II cell.  CLUSTER represents a 
coherent aggregate of cells.  MATRIX represents either cul-
ture medium or ECM.  FREE SPACE represents regions de-
void of both ECM elements and cells.  It also represents 
luminal material and the material in pockets enclosed by 
cells.  The latter are called LUMINAL SPACE when distinc-
tion from FREE SPACE is useful. CULTURE represents cell 
culture as a whole containing the culture components de-
scribed. 

 
4. AGENT-BASED MODEL 

 
We constructed AT II cell-mimetic analogues and sup-

porting modules following ABM and discrete event simu-
lation (DES) design principles.  Fig. 1 depicts the system’s 
architecture and component methods.  Main system com-
ponents are EXPERIMENT MANAGER, OBSERVER, CULTURE, 
CELL, CLUSTER, MATRIX and FREE SPACE.  Additional 
components that extended functionality include CULTURE 
graphical user interface (GUI) and DIFFUSER. 
 
4.1 Experimentation Agents 
 
4.1.1. Experiment manager 

  EXPERIMENT MANAGER is the top-level agent.  It man-
ages experiment setup, execution, and data processing.  
From user specified options, EXPERIMENT MANAGER 
launches a simulation in one of three experimentation 
modes: default, visual, and batch.  An experiment in de-
fault mode is simply a single execution.  In visual mode, a 
CULTURE GUI is created and a console launched to allow 
visualizing and accessing a live simulation.  Batch mode 
enables automatic construction and execution of multiple 
experiments, as well as processing and analysis of recorded 
measurements.  EXPERIMENT MANAGER generates a set of 
parameter files from user-defined specifications which de-
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limit the parameter space from which individual CULTURE 
parameter values are generated.  Once parameter files are 
generated, EXPERIMENT MANAGER automatically executes a 
batch of experiments, each corresponding to a different pa-
rameter file.  It instantiates and communicates with OB-
SERVER to conduct and record measurements during simu-
lation.  User specifies the number of repetitions for each 
experiment.  Repetitions are executed sequentially.  After 
completion of all experiments, basic analytic operations are 
automatically applied to collect and summarize experimen-
tal data. 
 
4.1.2. Observer 

OBSERVER is primarily responsible for recording CUL-
TURE measurements.  OBSERVER creation is a system op-
tion selected only when detailed measurements are needed.  
The agent has access to CULTURE, its grid spaces, and indi-
vidual CELLS.  OBSERVER is stepped and its probe method 
called at the end of every CULTURE simulation cycle.  The 
probe method scans the CULTURE internals and performs 
measurements.  Recorded measurements include total CELL 
population, CELL activities in terms of axiom usage, and 
migration trajectories of individual CELLS.  These measures 
are recorded as time series vectors; the data are written to 
summary files at simulation’s end.  Using CULTURE GUI 
functionalities, OBSERVER captures time-lapse CULTURE 
images and stores them in multiple formats for post-
processing. 
 
4.2 AT II Culture Components 
 

The core AT II model comprises five component types: 
MATRIX, FREE SPACE, CELL, CLUSTER, and CULTURE.  MA-
TRIX and FREE SPACE are passive objects.  CELLS are active 
agents with a set of rules that govern their actions.  Cellular 
processes of interest, such as migration and adhesion, are 
represented as discrete events.  CLUSTERS are simple repre-
sentations of aggregated, adhered cells, and their actions 
are governed by their own logic.  CULTURE is a simulation 
proper and represents the in vitro system as a whole.  It 
maintains a 2D hexagonal grid (CULTURE space), which is 
populated by MATRIX, FREE SPACE, and CELLS.  The grid, 
and hence the CULTURE, represents an observable 2D 
cross-section of an in vitro culture.  CULTURE GUI and 
DIFFUSER components extend CULTURE functionalities. 

 
4.2.1. Cell agent 

CELLS mimic specified behaviors of alveolar type II 
cells in cultures.  They are quasi-autonomous agents that 
follow their own agenda and schedule their own events.  
Their behaviors are governed by a decision logic (Algo-
rithm 1) and a set of rules—axioms—that reflect observed 
in vitro behaviors.  The term ‘axiom’ emphasizes that 
computer programs are mathematical, formal systems, and 
the initial mechanistic premises within simulations are ana-
logous to axioms in formal systems.  For this study, an 
axiom is an assumption about what conclusion can be 
drawn from what precondition for the purposes of further 
analysis or deduction.  Standard logic methods can be ap-
plied to reformulate the axioms to enforce constraints or 
reduce redundancy when needed [18].  Within a simulation, 
every CELL carries out exactly one action during each si-
mulation cycle.  CELL action is dictated by internal CELL 

 
 
Fig. 1. Uniform Modeling Language diagram of the system’s architecture.  EXPERIMENT MANAGER is a system-level agent that prepares parameter files, 
manages experiment execution, and processes output data for analysis and summary.  OBSERVER is an agent that tracks individual CELL activities and 
measures CULTURE attributes such as the number of CLUSTERS that form during simulation and their sizes.  CULTURE is the simulation proper and 
represents an arbitrary section of an in vitro cell culture.  It maintains a 2D hexagonal grid in which CELLS, MATRIX, and FREE SPACE objects are instan-
tiated.  Those three object types correspond to, respectively, cells, extracellular matrix, and the region (e.g., cyst lumen) devoid of cell and extracellular 
matrix.  MATRIX and FREE SPACE are passive objects.  CELLS are active agents with a set of axioms and decision logic that determine their action based 
on their internal state and neighboring object configurations.  CULTURE GUI provides a graphical interface to visualize and probe CULTURE during simu-
lation.  The system was implemented using MASON which provides standard libraries, object classes and methods (*). 
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state and neighboring object composition.  To achieve the 
initial set of target attributes, we defined what we judged to 
be a minimal set of actions: attach to an adjacent CELL, mi-
grate, and rearrange within a CLUSTER.  Every CELL main-
tains a state variable indicating whether it is a member of a 
CLUSTER.  

 
Algorithm 1: CELL agent decision logic 
 IF this CELL is active on CULTURE grid THEN 
  N = {neighboring objects} 
  IF N has CELL object type THEN 
   FOR each CELL neighbor C in N 
    p = UniformDistribution(0,1) 
    IF p < threshold THEN 
     Attach to C 
    END IF 
   END FOR 
  END IF 
  IF not attached to any CELL neighbor THEN 
   Migrate 
  ELSE  
   Rearrange 
  END IF 
 END IF 
 
When stepped, a CELL first determines its current 

neighboring object composition and arrangement.  If it has 
no CELL neighbors, it classifies itself as single and migrates 
to a neighboring non-CELL location.  A CELL can migrate 
randomly, CHEMOTACTICALLY, or along a CELL density 
gradient as specified in simulation control.  Random CELL 
migration implements a simple, unbiased random walk.  In 
CHEMOTACTIC mode, a CELL is capable of sensing CELL-
produced ATTRACTANT concentration in its immediate lo-
cal environment and moving towards the most concen-
trated region.  The CELL density-based mechanism enables 
CELLS to determine local CELL density within a defined ra-
dius and actively move along the density gradient. The me-
chanism does not yet map to a specific, known biological 

mechanism: it is an abstract placeholder for whatever non-
chemotactic mechanisms (e.g., ones based on ECM re-
modeling or long-range intercellular connection) enable 
AT II cells to sense other cells in their surroundings, obtain 
directional cues, and migrate based on that information. 

Each migration mode is encoded as a separate object 
method.  Every CELL maintains a state variable specifying 
its current migration mode.  CELLS also have a parameter 
that can be used to introduce random movements while 
CELLS are in a directional migration mode.  The parameter 
specifies the probability of electing to move randomly 
when the CELL is in directional migration mode.   

CELL migration speed is specified parametrically: a pa-
rameter specifies the average CELL speed in grid units per 
simulation cycle.  A parameter value = 1 results in an aver-
age speed of one grid unit per simulation cycle.  Setting the 
parameter to zero abolishes migration.  Non-integer para-
meter values (e.g., 0.5 or 2.8) require approximation.  In 
the current implementation, non-integer speeds are re-
solved as follows.  A CELL specified to migrate 0.5 units 
per cycle has a 50 percent chance of moving one unit at 
each cycle.  Consequently, its instantaneous speed is either 
zero or one unit per cycle.  However, on average, the CELL 
moves 0.5 units per cycle.  The same method is used to ac-
commodate non-integer CLUSTER migration speeds. 

When one or more CELL neighbors are in contact, the 
decision-making CELL attaches to each neighbor with a pa-
rametrically controlled probability, p, to form a CLUSTER.  
We used a pseudo-random number generator (PNG) to 
draw p values from a uniform distribution, U(0,1).  We de-
fined two probability thresholds for CELL-CELL attachment.  
One controlled the attachment probability of single, non-
clustered CELLS; the other controlled attachment probabili-
ty of clustered CELLS. 

Following attachment, CELLS switch to clustered state.  
Clustered CELLS follow the axioms in Table 1 to rearrange 

Table 1: CELL agent axioms for inter-CLUSTER rearrangement

Axiom 
Precondition 

Action 
CELL MATRIX FREE SPACE 

1a ≥ 1 0 0 Push out a CELL neighbor; move to the vacated location; leave behind a 
FREE SPACE object 

1b 0 ≥ 1 0 Do nothing 
1c 0 0 ≥ 1 Move to an adjacent FREE SPACE; leave behind a FREE SPACE object 
2a 1 or 2* ≥ 1 0 Move to an adjacent MATRIX next to a CELL neighbor; leave behind a MA-

TRIX object 
2b 2** ≥ 1 0 Move to an adjacent MATRIX next to a CELL neighbor; pull the other CELL 

neighbor into the vacated location 
2c 3 ≥ 1 0 Do nothing 
2d 4 ≥ 1 0 Move to an adjacent MATRIX; leave behind a MATRIX object 
2e 5 ≥ 1 0 Move to an adjacent MATRIX; leave behind a FREE SPACE object 
2f ≥ 1 0 ≥ 1 Push out a CELL neighbor; move to the vacated location; leave behind a 

FREE SPACE object 
2g 0 ≥ 1 ≥ 1 Do nothing 
3a ≥ 1 ≥ 1 1 Move to the adjacent MATRIX; leave behind a FREE SPACE object 
3b 1† ≥ 1 ≥ 1 Move to an adjacent FREE SPACE; pull the CELL neighbor into the vacated 

location 
3c‡ ≥ 1 ≥ 1 ≥ 1 Do nothing 

*adjacent; **non-adjacent; †adjacent to a MATRIX neighbor; ‡for all other configurations of three object types 
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their relative positions within the parent CLUSTER, a 
process that is essential for ALC formation.  Axioms de-
fine preconditions and corresponding CELL actions.  Pre-
conditions are based on neighboring object types and their 
specific configurations.  Rearrangement actions are based 
on experimental insights from the literature and expert opi-
nion.  For cases that lack relevant biological information, 
we rely on basic assumptions about epithelial cell behavior.  
One assumption is that cells act to establish and maintain a 
preferred local environment.  Another is their mandate to 
achieve three surface types: apical (lumen), basal (matrix), 
and lateral (cell contact) [6]. 

 
4.2.2. Cluster agent 

CLUSTER is an agent and a composite object containing 
member CELLS and LUMINAL SPACE objects.  It represents 
coherent multi-CELL structures and simulates simple fea-
tures of their collective behavior.  A CLUSTER is created 
when two or more CELLS attach.  Single CELLS that estab-
lish attachments to a CLUSTER’s member CELLS are added 
to the CLUSTER.  Individual CLUSTERS that are adjacent and 
detected by member CELLS, can combine to form a larger 
aggregate.   

A CLUSTER schedules its own events, which run at the 
same frequency of CELL events.  CLUSTER events are ma-
naged by the master event schedule; their execution order-
ing is pseudo-random and independent of CELL events.  A 
CLUSTER deactivates and withdraws from simulation when 
its membership diminishes to one; the remaining CELL re-
verts to single CELL status.   

Each CLUSTER uses an identical step function to deter-
mine its action.  The step function is scheduled every simu-
lation cycle.  A CLUSTER can either migrate a certain dis-
tance or do nothing.  In vitro, multi-cell aggregates tend to 
migrate as a coherent body.  That collective movement is 
driven by inherent, coordinated, individual cell actions, but 
to simplify implementation we directed CLUSTER to handle 
collective migration.  When stepped, a CLUSTER moves 
with some probability if its overall shape has been altered 
by the rearranging CELL actions.  Migration speed and the 
probability of movement are specified parametrically.  
Similar to a CELL, a CLUSTER can adopt one of three migra-
tion modes: random, CHEMOTACTIC, and CELL density-
based.  For simplicity, it adopts the majority migration 
mode of its member CELLS.  To further simplify design, 
CLUSTER movement maintains overall shape and relative 
positions of the composing CELLS.  CLUSTER movement 
stops when the movement is blocked by non-member 
CELLS or other CLUSTERS.  For object interaction, each 
CLUSTER is provided with standard class methods to query 
and access member CELLS and associated LUMINAL SPACE.  
Because CLUSTERS do not exist on a separate grid, they do 
not have or need their own positioning information. 

 
4.2.3. Culture 

A CULTURE maps to an arbitrary culture section within 
one well of a multi-well culture plate.  It has a master event 

schedule, PNGs, and its own start and end methods that are 
called automatically at simulation’s start and end.   

The start method initializes CULTURE content according 
to specifications provided in a parameter file.  The CUL-
TURE uses a standard 2D hexagonal grid to provide the 
space in which its objects reside.  The grid has toroidal to-
pologies.  Following grid initialization, CULTURE compo-
nents—CELLS, MATRIX, and FREE SPACE—are placed on 
the grid and an initial scheduling of CELLS is created on the 
master event schedule.  For simplicity, each grid position is 
occupied by one object.  That condition can be easily 
changed when the need arises.   

Simulation starts following completion of the start me-
thod call.  As execution advances, the event schedule is 
stepped for a number of simulation cycles or until a stop 
signal is produced.  Simulation time advances in discrete 
steps.  Its course unit is simulation cycle, during which 
everything in the simulation has one opportunity to update.  
Ordering of events to occur within the same simulation 
cycle is pseudo-random.  Having objects update pseudo-
randomly simulates the parallel operation of cells in culture.  
It also makes execution outcomes nondeterministic while 
building in a degree of uncertainty, a fundamental charac-
teristic of living systems.   

At the end of simulation, the finish method is executed 
to close data files and clear the system.  Visualization and 
user interaction are provided by a CULTURE GUI.  It ex-
tends CULTURE with display and controller methods, which 
enable the user to start a simulation or pause and access 
live states of CULTURE grid content during simulation.  
CULTURE GUI also supports automatic recording of se-
quential images in multiple formats for post-simulation 
image processing. 

 
4.2.4. Diffuser 

A DIFFUSER is a CULTURE extension for simulating dis-
persion of extracellular substances.  A DIFFUSER object is 
created only when CHEMOTACTIC migration mode is 
enabled.  It contains a grid and a step function to compute 
diffusion.  The same hexagonal 2D grid type is used and 
aligned with the CULTURE grid; however, the grid contains 
only numerical values.  The CULTURE start function initia-
lizes the DIFFUSER with the specified initial ATTRACTANT 
levels.  The DIFFUSER object is stepped and its diffusion al-
gorithm is executed a parameter-specified number of times 
within each simulation cycle.  The diffusion algorithm 
provides a simple discrete approximation of diffusion in a 
continuous space using parametrically defined diffusion 
and loss rates: 

 
Ai(t + 1) = (1 – e)[Ai(t) + d(Ãi(t) – Ai(t))]    (1) 
 

where d and e are the diffusion and loss rates, t is the dif-
fuser step counter, Ai(t) is the ATTRACTANT level at grid 
position i, and Ãi(t) is the average level across grid posi-
tion i and its six neighboring locations.  Maximum rates = 
1.  ATTRACTANT levels are capped at a maximum listed in 
CULTURE specifications.  
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5. EXPERIMENTS AND RESULTS 

 
We conducted exploratory simulation experiments to 

study ALC growth at varying CELL densities.  We varied 
the initial CELL population from 100 to 6,000 in increments 
of 100.  CULTURE grid height and width were set to 100 
units each.  All three CELL migration modes were used at 
each CELL density.  We executed 100 Monte Carlo (MC) 
simulations per CELL density and migration mode.  Each 
MC run lasted 100 simulation cycles corresponding to 
~147 hours in vitro.  Model parameters used are provided 
in Table 2.  To simulate in vitro embedded culture, CUL-
TURE grid was initialized and filled with MATRIX objects.  
Next, CELLS were instantiated and distributed randomly on 
the grid, replacing existing MATRIX objects as needed.  We 
used PNG seeds, set to system time, to randomize simula-
tion events.  CELLS and CLUSTERS were selected at random 
(one at a time without replacement) and carried through 
their actions each simulation cycle.  

Fig. 2 summarizes simulation outcomes in comparison 
with referent measures.  CELLS self-organized into multi-
CELL structures that resemble ALCs (Fig. 2A, B) by adher-
ing strictly to their axiomatic principles of operation.  CELL 
migration and aggregation enabled formation of multiple 
CLUSTERS.  CLUSTERS used CELL rearrangement to develop 
into LUMINAL SPACE-enclosing CYSTS.  LUMINAL SPACES 
were devoid of CELLS and MATRIX, and were enclosed by a 
continuous CELL monolayer.  Generally, ALCS maintained 
convex polygonal shapes, which map to a roundish shape 
in continuous 2D cross-sections.   

ALC sizes increased monotonically with initial CELL 
densities (Fig. 2C).  In vitro, overall changes represent 
more than a twofold increase in ALC diameter; changes in 
silico varied depending on CELL migration mode.  At the 
lowest CELL density corresponding to 1 x 104 cells/cm2, all 
three CELL migration modes produced small ALCS, mostly 
in the 20-to-40 µm diameter range, which was comparable 
to in vitro measurements (1 grid unit = 8.5 µm in vitro).  
CELLS migrating randomly failed to mimic the relatively 
steep rise in ALC diameter following an increase in the ini-
tial cell density.  In contrast with random migration, CHE-
MOTAXIS and CELL density-based migration produced 

ALCS that were similar in size to their in vitro counterparts.  
Directionally migrating CELLS tended to aggregate and 
form multi-CELL structures earlier, compared to randomly 
migrating CELLS.  The difference was most evident in 
sparsely populated CULTURES.  Both directional migration 
mechanisms gave rise to convergent CELL movement that 
closely mimicked in vitro aggregation patterns (not shown).  
Of the two, the CELL density-based migration led to simu-
lation outcomes closest to the in vitro measures. 

Fig. 3 shows clustered CELL axiom usage in CELL densi-
ty-based migration mode.  Essentially same use patterns 
were observed in random and CHEMOTACTIC modes.  As 
shown, Axioms 2a and 3c were used most frequently, fol-
lowed by Axioms 2b and 2c.  CELLS executing Axiom 2a, 
2b, and 2c had only CELL and MATRIX neighbors; they 

Table 2: Key model parameters and respective values 

Parameter Value(s) 

Initial CELL population 100~6,000 
Maximum CELL push/pull iteration 5 
CELL speed in grid units 1 
Single CELL attachment probability 0.2 
Clustered CELL attachment probability 0.01 
Local CELL density radius 5 
Diffusion step multiples* 25 
Diffusion rate 0.4 
Evaporation rate 0.05 
Maximum SOLUTE level 50,000 
SOLUTE production per simulation cycle 3,000~8,000 

* Diffusion algorithm iterations per simulation cycle 

Fig. 2. Alveolar-like cyst (ALC) growth in simulated and in vitro cell 
cultures.  (A) Phase-contrast image after 4 days in 2% Matrigel [5]; cour-
tesy of W. Yu and K. Mostov.  Cells were plated initially at 10 x 104 
cells/cm2.  ALCs had roundish shapes without obvious depressions or 
dimples.  Bar, ~ 50 µm.  (B) CULTURE images after 100 simulation 
cycles; the initial CELL population was set to 2,000 CELLS.  Like in vitro, 
the ALCS maintained convexity and had no dimples.  Gray and black 
spaces represent MATRIX and FREE (or LUMINAL) SPACE, respectively.  
(C) Both in vitro and in silico, ALC diameter increased monotonically 
with the initial cell density.  Circles: in vitro measurements (mean).  We 
tested three different CELL migration mechanisms: random migration 
(diamonds), CHEMOTAXIS (triangles), and CELL density-based migration 
(squares).  In the first, CELLS migrated randomly without directional bias 
or persistence.  In the second, CELLS migrated along a diffusive CHE-
MOATTRACTANT gradient.  In the third, CELLS migrated along a local 
CELL density gradient.  In all three scenarios, CELLS developed normal 
ALCS.  CELLS migrating along a CELL density gradient achieved out-
comes most similar to the in vitro measures.  Mean outcome of 100 
Monte Carlo runs each lasting 100 simulation cycles. 
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were members of developing CLUSTERS that did not yet 
have a LUMINAL SPACE.  CELLS in maturing ALCS ex-
ecuted Axiom 3c, so not surprisingly that axiom was ex-
ecuted most frequently as the simulation progressed. 

Usage patterns changed dynamically over time reflec-
tive of the changes in a CELL’s extracellular composition 
and arrangement.  Although relative axiom use patterns 
were qualitatively similar for all initial CELL densities, the 
specific details were both simulation cycle and initial CELL 
density dependent.  CELLS in sparsely populated CULTURES 
exhibited more frequent and extended use of Axioms 2b 
and 2c, whereas in densely populated CULTURES, use fre-
quencies of Axioms 2e, 2f, 3a, and 3b increased several 
fold.   

The remaining axioms exhibited infrequent use, but that 
did not mean that they were unimportant.  In fact, several 
infrequently used axioms were critical to the formation of 
morphologically normal ALCS.  Blocking execution of 
each of these axioms disrupted normal ALC growth (not 
shown).  For example, blockage of Axiom 1c or 2f led to 
frequent appearance of isolated clumps of CELLS within 
ALC LUMENS.  When executions of Axioms 1a and 2e 
were blocked, CELL aggregates failed to develop a LUMIN-
AL SPACE and no ALCS formed.  Without Axiom 3a, the 

CELLS formed ALCS having irregular, nonconvex shapes. 
   

6. DISCUSSION 
 
Epithelial cyst formation has been studied extensively 

using various cell lines under 3D culture conditions [6]. 
When cultured in 3D, those cell types develop spherical, 
lumen-enclosing cysts similar to those observed in AT II 
cultures.  Unlike AT II cultures, proliferation and apoptosis 
(cell death) play dominant roles in epithelial cyst develop-
ment.  Interestingly, MDCK cells can develop cysts by 
mechanisms similar to those of ALC growth under certain 
conditions, indicating that one of multiple mechanisms is 
in use depending on circumstances.  Comparison of CELL 
decision logic between AT II and MDCK models [7] re-
flects the observed differences in cyst growth mechanisms.  
Notwithstanding those differences, morphological similari-
ties suggest that common principles of cell operation may 
underpin epithelial cyst development. For example, both 
models suggest a common theme whereby every cell 
strives to maximize the number of adhesive contacts along 
its lateral surface.  CELLS arranged in a CYST structure sa-
tisfy such mandates.  We expect successful validation of 
extensions of 2D behaviors into three dimensions justifies 

Fig. 3. Clustered CELL axiom usage.  Frequency of axiom usage is plotted versus simulation cycle for the AT II analogue as in Fig. 2.  One simulation 
cycle maps to ~ 1.47 hours in vitro.  Relative axiom use depended on initial CELL densities, which are listed in each panel.  The variance in use fre-
quency across simulation cycles for the less frequently used axioms was large.  In the inserts, trend lines were used to make patterns more evident.  
Early in simulations, Axioms 2a, 2b, and 2c were used most frequently as CELLS rearranged themselves and condensed into packed CLUSTERS.  Axioms 
1a and 2e were executed most often early in ALC development to provide for LUMINAL SPACE creation.  As simulations progressed and ALCS matured, 
Axiom 3c (do nothing) was executed more frequently: stable structures were forming and for most CELLS, no further rearrangement was needed.  (A–
B) At low-to-moderate CELL densities, Axioms 2b and 2c also applied often when CELL CLUSTERS were unable to grow further and develop into ALCS. 
The remaining axioms showed only limited usage (insets), yet they were essential in achieving targeted attributes.  For example, Axiom 1c was essen-
tial in enabling CELLS trapped within the LUMINAL SPACE to merge with its parent CLUSTER.  (C–D) In densely populated cultures, usage of Axioms 2e, 
2f, 3a, and 3b increased several fold (insets), especially early in simulation.  ALCS developed and matured sooner in dense CULTURES as indicated by 
the earlier increases in Axiom 3c usage. 
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the hypothesis of an analogous cell behavior in a 3D cul-
ture environment. 

Cell migration is the principal process by which AT II 
cells develop multi-cell clusters, and that is also the case 
for simulations.  However, it is largely unknown what mi-
gration mechanism(s) are involved in vitro and how 
changes in migration patterns affect ALC development.  
To explore those issues we challenged our model using dif-
ferent cell migration methods and compared outcomes.  
First was random CELL motility implemented as a simple, 
random walk.  That represents the simplest mechanism; it 
required no assumptions about molecular or physical cues 
that might guide AT II cell migration.  Our simulation re-
sults suggest that random motility alone is not an effective 
means for cell aggregation. 

In addition, we explored two directional migration 
modes, one driven by CELL density gradients and the other 
by CHEMOTAXIS, and found that both are adequate drivers 
of CLUSTER formation and ALC growth.  The results show 
that of the two, CHEMOTAXIS is somewhat less effective 
particularly in densely populated CULTURES, in which 
CELLS lost directional persistence due to rapid fluctuations 
in local ATTRACTANT concentrations.  In contrast, the CELL 
density-based mechanism enabled CELLS to maintain per-
sistent directionality in densely populated conditions.  The 
observed differences could be attributed to the analogue’s 
chosen spatial discretization and implementation details, or 
unknown artifacts.  In vitro and in vivo chemotaxis also 
could involve local gradients of multiple chemotactic 
agents, which additionally might modulate cell processes 
like cellular adhesion.  In addition, the current model prec-
ludes simultaneous use of multiple migration mechanisms, 
yet it is possible that AT II cells might employ multiple 
mechanisms and switch between those to direct and optim-
ize their movement.  Experimental findings of related cell 
types like MCF10A indicate that they can adopt counter 
modes of migration, random versus directionally persistent, 
which are regulated by a mechanism dependent on Rac1 

protein activity [19].   Such issues can be probed further in 
a future study as more wet-lab information becomes avail-
able. 

When and how does an AT cell choose to switch from 
one activity to another?  Why does it choose one action ra-
ther than another?  Are several action options always 
available to each cell?  The class of models presented here-
in provides a platform to hypothesize, challenge, and refine 
plausible answers.  The causal chain of events responsible 
for most simulation events can be explored in detail, and 
assessments can be made as to whether critical events are 
biotic (supportable by in vitro evidence) or not. 

Thus far, we have focused on basic AT II cell attributes 
in one specific culture type.  When the conditions change, 
AT II cells develop morphologies and attributes that are 
different from those observed in the 3D cell culture.  Inclu-
sion of those attributes automatically invalidates the cur-
rent analogue.  An advantage of the approach used is the 
ease with which additional attributes and details can be 
added during the iterative model refinement protocol de-
scribed below.  Having achieved the initial attributes, we 
can proceed to elaborate the model to include actual sub-
cellular details that will map to cell locomotion pathways 
and intercellular signaling networks.  From an engineering 
perspective, doing so is a relatively easy task.  It can be 
achieved simply by swapping a current component (e.g., 
atomic CELL agent) for a more detailed composite agent 
(Fig. 4).  The replacement could also occur at the intra-
component level, for example by replacing CELL axioms 
with more detailed logic based on interacting components.  
A challenging task will be to insure cross-model validation 
between different analogue variants. 

For further development, we suggest following the iter-
ative refinement protocol used successfully herein and in 
previous studies [20-22].  The protocol supports adhering 
to the guideline of parsimony that is important when build-
ing a complex model.  The protocol steps are: 

1) Start with a small but diverse set of referent attributes, 
static and dynamic.  They comprise the initial targeted 
attribute list. 

2) Posit coarse-grained discretized mechanisms, requir-
ing as few components as is reasonable that may generate 
analogous phenomena.  Make components that map to liv-
ing counterparts quasi-autonomous.   

3) Instantiate analogue components and mechanisms in 
software capable of conducting automated experiments. 

4) Conduct experiments that measure a variety of phe-
nomena generated during execution.  So doing establishes 
the degree of in silico–in vitro phenotype overlap, and lack 
thereof. 

5) Achieve a degree of validation by satisfying a pres-
pecified level of similarity between in silico and targeted in 
vitro attributes. 

6) Add one or more new attributes (measurable pheno-
mena) to the targeted list until the analogue in step 5 is fal-
sified.  Added attributes need to be at a similar level to and 
close to those already present so that it seems feasible to 
achieve the expanded target attribute with as little reengi-

 
Fig. 4. Model refinement and cross-model validation.  CELLS are the 
main actors of the current AT II analogue.  They are atomic components 
whose actions are governed by axioms.  CELL actions and interactions 
cause phenotypic attributes.  Because CELLS and other components are 
discrete objects, they can be replaced easily with new or revised objects.  
Replacements can be composite objects composed of other objects.  De-
tails at different scales can be incorporated into the analogue in like 
manner.  When so doing, one must provide appropriate similarity metrics 
and demonstrate cross-model validation (original versus revised) to in-
sure that the change does not alter analogue phenotype measurably. 
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neering of components as possible.  Once the analogue in 
step 5 is falsified, return to step 2. 

The protocol articulates a process for developing, test-
ing, and refining mechanistic explanations or hypotheses 
about biological phenomena.  It is straightforward and so 
can be used for evolving any mechanistically focused, 
agent-based, biomimetic analogue of the executable biolo-
gy type [16]. 

Finally, the nature and organization of software compo-
nents within the AT II analogue framework were designed 
to facilitate iterative refinement.  As the process continues, 
following each round of validation, more of what we know 
or think we know becomes instantiated in the analogue.  
After many such rounds, the analogue will begin trans-
forming into an executable knowledge embodiment.  To 
achieve that vision, it is essential that biomimetic compo-
nents function (quasi-) autonomously, all or part of the 
time.  That is why CELLS and CLUSTERS are agents.  Every-
thing that a CELL needs to function (in a specified software 
environment) is contained within its code.  Absent that 
property, the mappings from software mechanisms to AT 
II in vitro mechanisms are not concretizable.  

 
7. CONCLUSIONS 

 
The AT II analogue establishes a foundation for future 

studies aimed at articulating the generative principles of 
lung alveolar development.  Guided by additional data, the 
model can easily accommodate new or more detailed sys-
tem characteristics.  We anticipate that in silico experimen-
tation using this class of agent-based model will provide a 
fruitful new strategy to dissect the operational basis of 
morphogenesis. 

 
8. IMPLEMENTATION TOOLS 

 
The model framework was implemented using MASON 

v11.  MASON [23] is a discrete event, multi-agent simula-
tion library coded in Java.  We used R 2.5.1 [24] for data 
analysis and generation of summary figures.  Batch simula-
tion experiments were performed on a small-scale Beowulf 
cluster system consisting of one master node and seven 
client nodes, each equipped with a single Intel Pentium 4 
3.0-GHz CPU and a 2-GB SDRAM memory.  For model 
development, testing, analysis, and simulation image 
processing, we used personal computers.  Computer codes 
and project files are available from the authors upon re-
quest. 
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