INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS

VOL. 14, NO. 1, MARCH 2009, 62-76

Towards Organization Aware Agent-based
Simulation

Maarten SIERHUIS, Catholijn JONKER, Birna van RIEMSDIJK and Koen HINDRIKS

Abstract—No organization exists without actors. organizations
whether formal or informal are the way people coordinate their
activities and collaborate. The dynamics of organizations are
caused by the dynamics of its actors and the environment of the
organization. In this paper we layout a generic framework for
agent-based simulations that allows the modeller to simulate the
extent to which agents are aware of the organizations they are
part of and the extent to which the agents conform their behavior
to the policies and norms of the organization. Furthermore, the
framework allows agents to join or leave organizations and to
take up or drop roles within the organization. We formulate the
requirements for organization aware agent-based simulation,
we provide a basic architecture in the agent-based simulation
environment Brahms, and we illustrate the principles in a case
study based on a partial MOISE™ specification of a soccer team.

Index Terms—agent-based modeling and simulation (ABMS),
multi-agent systems (MAS), organization, organizational model-
ing (OM), roles, groups, joint activity

1. INTRODUCTION

ORGANIZATION and activity aware agents are im-

portant for developing open heterogeneous multi-agent
systems (MAS). Developing and experimenting with open
MAS is still in its infancy. For that reason we are working to-
wards simulations of such systems in which organizations are
specified explicitly, and the agents involved are organization
aware. Awareness is necessary because in open heterogeneous
MAS, software agents, people, systems and robots can come
together to form teams, and work as part of an organization
that either exists formally or is ad hoc. The issues are plentiful.
The MAS community researches some of these issues, such
as open organization modeling [1], [2], [3], argumentation
frameworks [4], [5], [6], [7], teamwork [8], [9], [10], [11],
and culture [12], [13], [14]. However, there does not exist one
framework that unifies all these theories into a framework for
modeling organization and activity aware agents. In this paper,
we discuss what is needed for developing a theoretical frame-
work for modeling and simulating organization and activity
aware agents. In such a framework, agent modelers need to be
able to represent the different aspects of organization, individ-
ual and teamwork behavior, norms, policies and culture of the
system and ways common ground is achieved in the system, in
such a way that the agents can reason with these concepts and

Manuscript received January 1, 2009. This work was supported by Carnegie
Mellon University Silicon Valley and the Man-Machine Interaction group at
the Delft Technical University.

M. Sierhuis is with CMU Silicon Valley at NASA Ames Research Center.
This work was done while he was a visiting professor at MMI, Delft University
of Technology. C. Jonker. B. van Riemsdijk and K. Hindriks are all with the
MMI group at Delft Technical University.

can dynamically change the current structures represented with
these concepts in their individual belief system, as well as in
the system’s state and environment. We argue that a multiagent
simulation environment is needed to simulate agents coming
into and leaving the environment, in such a way that the issue
with regards to open heterogeneous MAS can be researched.
Indeed, we are proposing agent directed simulation [15] as a
tool for researching open heterogeneous MAS.

Modeling an open heterogeneous environment has the fol-
lowing aspects:

o Organization aspect: How do you manage the dynamic
entry and exit of actors within the organization(s) and the
environment? For this, actors that enter an organization
need to be able to dynamically get an understanding
(i.e. learn) of the groups, roles and responsibilities in
the organization. It is important to note that actors could
be software agents, external systems (even robots) and
people.

« Behavioral aspect: Actors that become part of an or-
ganization need to be able to understand (i.e., learn) and
reason not only about the role(s) it and others are playing,
but also what it means to play that role. In other words,
the actor needs to be able to learn and reason about how to
fulfill the role(s) it is playing and about the dependencies
between this role and others in the organization. For the
behavioral aspect we combine modeling behavior in terms
of goals and tasks, with modeling activities and work
practice [16], [17].

o Collaboration aspect: Besides any formal and informal
organizational structures, there exist many different teams
or adhocracies' through which actors perform their indi-
vidual and joint activities. The actors need to be able to
form teams and do work within the team, and thus they
need to be able reason about the teamwork aspect.

« Regulation aspect: To ensure smooth operations, every
organization has norms, policies, laws (in terms of per-
missions and obligations), and an organizational culture.
The better the agents in the organization understand and
adhere to these regulations, the smoother operations will
be. This implies that agents entering the organizations
need to learn and understand the regulations, to decide to
what extent they will adhere to them, as well as consider
the monitoring and detection of individual actor and team
violations of norms and policies and their punishment.

o Common Ground aspect: Common ground is the ability

! An adhocracy is a flexible, adaptable, and informal organizational structure
without bureaucratic policies or procedures.

of actors to debate and come to a shared understanding
of positions and arguments. In order for actors to work
together they need to be able to create common ground
[18] .

« Environment aspect: All organizations are implemented
in an environment. Human and robot organizations are
implemented in physical places and spaces/structures,
dealing with physical events, while software agent orga-
nizations are on the one hand implemented in physical
objects (i.e., computers), but behave within a virtual
environment (i.e., computer memory and communication
networks). In all cases, the agents within the organization
need an ability to use, reason and communicate about the
environment [19].

In this paper, we present how the above aspects can be com-
bined in a modeling and simulation architectural framework.
We focus on the organization and environment aspects, and
to some degree on the behavioral and collaboration aspects.
The regulation, common ground, and collaboration aspects
will be addressed in future work in which the agents will
deliberate on their options regarding these matters. We present
a first implementation of the framework in the Brahms agent
simulation environment. Brahms is an open agent framework
where both agents developed in the Brahms agent-oriented
language (AOL) and agents developed in the Java language
can be executed [20], [21]. The Brahms environment can run
in either simulation mode or in realtime mode. In realtime
mode, a Brahms application is a MAS. In simulation mode, a
Brahms application is a discrete-event multi-agent simulation
of agent and object execution (representing people, software
agents, robots, artifacts or external systems), agent and object
interaction, and agent organization and environment.

The rest of the paper is divided into the following sections.
Section 2 provides an example about a soccer team that we
use to apply the framework from section 4. Section 3 gives
background on ideas and concepts related to organizational
modeling. Section 4 describes the organizational modeling
and simulation framework, based on MOISEt. We end the
paper with a conclusion in section 5. The appendix provides
some Brahms soccer model source code, and provides URLs
to download run the model yourself.

2. LEADING EXAMPLE: SOCCER

To illustrate our ideas we work with examples that are
based on soccer. First of all we show a generic organization
model for soccer that is based on the MOISE+ soccer team
organization structure in Hiibner, et al. [22]. It defines what a
soccer team is, its roles, an attack scheme that is part of the
team’s global organizational goal, and the missions to support
the attack scheme formulated at the level of the roles. The
first of those role missions is to get the ball, go towards the
opponent field, and pass the ball an agent that is placed in
the midfield and that is committed to the second mission,
i.e. to dribble the ball to the opponent back line and then
to pass the ball to an agent that is in the opponent goal
area and is committed to mission of shooting the ball at the
opponent’s goal. Although the generic structure is quite clear,

Sierhuis et al: Towards Organization Aware Agent-based Simulation 63

from the point of view of the agents fthat are supposed to
realise the global organizationals goals, it is not so easy for
them to perform their missions. Everyone slightly familiar
with team sports knows that it is not enough to assign agents
in a static way to such missions. On the one hand, agents
are assigned to roles, however, during the game, the agents
can dynamically and temporarily take over roles when the
situation demands it. Furthermore, the agents will have to
observe without communication, which agents are committed
to the missions in the plan (as communication is often of
limited value in a real game environment). Finally, it is an
agent’s judgement if passing the ball to an agent, committed to
the mission next in the plan, is actually in the position to carry
out that mission; is there no opponent agent that is likely to
intercept the pass? This requires an agent that understands not
only the roles played by its teammates, but also, the behavior
and capabilities of the opponent team members, which is
part of ones work practice. This example, at the very least,
illustrates the following requirements of the organization; be
it the agents or the organization specification:

« agents have to:

— understand their own roles

— understand, to the point of correct anticipa-
tion/prediction, the roles of agents that they might
have to pass the ball to

— understand the roles of agents that they might have
to temporarily take over

— be able to trust team mates to take over its own role
when necessary

— understand the behavior (or roles) of opponent agents
so that they can anticipate on that behavior

— have the capabilities needed to observe and correctly
interpret the dynamic situation, and the capabilities
to exercise their own role and, to some extent, other
roles

« the organization should enable and/or encourage all of

the above.

The second example from the soccer domain considers a
specific instantiation of a well-known soccer team in The
Netherlands. The case study presented here is hypothetical,
but the reference to well-known soccer players and trainers is
deliberate. The leading characters are

¢ Sjakie Meulemans, a talented young central forward

that has just transferred from another soccer team FC
Volendam

o Rinus Michels, the coach of Ajax

o Johan Cruijff, the current center forward of Ajax

Amsterdamsche Football Club Ajax, referred to simply as
Ajax, is a professional football club from Amsterdam, The
Netherlands. Ajax raises good football® talent that’s often sold
for large sums of money to other European clubs. These talents
are brought on at an early age. Sjakie Meulemans is such a
talent. Sjakie is a young player in the youth team of Ajax. He
has just been hired away from the youth of FC Volendam, not

2 Although we adhere to the more accepted term football, in this paper we
continue with the use of the term soccer to stay consistent with the MOISE*
example we use.

64 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 14, NO. 1, MARCH 2009

only because of his speed, but mostly because of his incredible
ability with the ball (his foot work). Sjakie is only seventeen
and is a young and talented center forward, whose talent lays
in scoring goals in the most unbelievable ways. Some talk
about Sjakie’s “wondersloffen” (transl: miracle shoes). The
young-talent scouts from Ajax spotted him on a wet Saturday,
six months ago, on the fields of FC Volendam. They spoke to
the coach of Ajax, showed him some video of Sjakie, and with
his approval started negotiation with FC Volendam. Sjakie is
thrilled to now start playing for this illustrious team.

As Sjakie has been playing soccer since the age of 5,
he is well familiar with the generic organizational structure
of soccer teams, and that of FC Volendam in particular.
Furthermore, Sjakie is well familiar with Ajax and its famous
soccer players. However, Sjakie needs much more information
on how things are organised at Ajax. Also he is still unsure
which position he will play in the team.

Today, Sjakie is joining the team for the first time in a
practice session. Coach Rinus Michels has high hopes for
Sjakie to play central forward for Ajax as well. Before Sjakie
arrives, Rinus makes it clear to the team that he wants to test
Sjakie’s talents in the next game, and that he wants them to
treat him as one of the team. He informs them that in that
next game Sjakie will play the central forward role. On the
question of Johan Cruijff, the current central forward, Rinus
explains that Johan will have to play as a left forward in the
next game, a position Johan is very familiar with. Furthermore,
Rinus asks Johan to explain to Sjakie what is expected of him
during the game, i.e., the different activities and tasks he needs
to perform as a central forward in Ajax and what he can expect
of the players around him.

As Sjakie walks into the dressing room, he meets all the
players for the first time. One by one he shakes their hand,
as they explain what position they are playing in the team.
After they are all dressed for the training, they walk together
to the training field. Coach Rinus Michels tells everyone to
go for a warmup run, while he talks to Sjakie. Rinus explains
to him the organization of the team and Sjakie’s role within
it. Michels tells Sjakie to talk to Johan during the training,
because he will explain to Sjakie the different activities and
plays he should learn for the next game. Sjakie knows how
to be a forward, i.e., he knows he needs to score goals, but
he realizes that his role within the Ajax squad could be of a
different nature. Does he need to help defend? Does he have
a man to cover? Does he need to fall back to the mid-field to
accept the ball on an attack, and to which of the wing players,
left or right, does he need to pass the ball when he receives
it? Etcetera, etcetera. During the training session, Johan stays
with Sjakie and at appropriate moments he talks to Sjakie and
gives him the specifics he needs to know for his role as a
forward in the attack scheme they are going to play in the
next game. These discussion continue after the training and
over the next days. During the training sessions Sjakie and
the other team members learn to interpret each others behavior
and capabilities. The old team members find out that Sjakie is
a dedicated and versatile player. He is always in time, polite
to everyone, and attentive to instruction and tips. During the
next game, Johan who knows Sjakie best, succesfully passes

the ball to him, and Sjakie scores a goal.

The above scenario illustrates some aspects of team play
and organizations for which various solutions could be found
and only one is contained in the scenario:

o new team members have to be informed of / have to learn

— the organization of the team: structure, role specifi-
cations, and regulations

— the role assignment to agents

— the capabilities of the other team members

 existing team members have to be learn

— the role that the new team member is going to play
— the capabilities of the new team member
— the attitude of the new team member towards the
regulations of the organization
Note that in settings such as these, the integration of new
team members will not always go so smoothly. Not everyone
has such a generous heart and the self-confidence of Johan,
who had to give way to Sjakie at least for the time being.
Such aspects are not discussed further in this paper. However,
they are important, because the emotions of team members
may make them behave in unpredictable, or even obstructive
ways, violating various regulations of the organization [23].
The above examples will be addressed in the following sec-
tions to illustrate our framework and an example instantiation
in Brahms.

3. BACKGROUND

In this section, we present the main ideas and techniques
upon which we base our organizational simulation framework
in Brahms. Our aim is to be able to model the full richness of
organizations and the agents that populate them. In particular,
we aim to facilitate both the top-down explicit specification
of organizational aspects such as organizational structure, as
well as bottom-up coordination driven by the agents of an
organization. These two perspectives are called organization-
centered and agent-centered, respectively, in [24]. A second
dimension along which agent organizations can differ, is
whether agents are aware of the organization in which they
operate [24]. Being aware allows the agents to reason with
and about the organization.

All of these aspects of agent organizations are already
challenging in and of themselves. Therefore, it is not the
aim of this paper to address any of these aspects in depth.
Rather, we take a first step towards investigating how they
can be integrated to support rich organizational modeling
and simulation using Brahms. In the rest of this section, we
first provide general background on agent-based organizational
simulation, and describe existing work on which we build for
organizational simulation in Brahms.

3.1. Organizational Modeling and Simulation

Within Computational organization Theory and Artificial
Intelligence, a number of organization modeling approaches
have been developed to simulate and analyse dynamics within
organizations; e.g. [25], [1], [26], [27], [24]. Some of these
approaches explicitly focus on modeling organizational struc-
ture, abstracting from the detailed dynamics. Other approaches

put less emphasis on organizational structure but focus on
the dynamics in the sense of implementing and experimenting
with simulation models. These simulation models are based on
some implementation environment that has no dedicated con-
cepts for organization simulation/implementation. The Strictly
Declarative modeling Language SDML [26], and the use
of the agent-oriented modeling approach DESIRE in social
simulation as presented in [28] are exceptions. Both modeling
approaches focus on specification and simulation; however,
they do not offer dedicated support for modeling and simulat-
ing organizations, let alone implementing open organizations
for agents on the Internet.

Organizational modeling languages support the explicit
specification of organizations using the notion of “role” [29],
[27], [30], [24], [22], [31], [32]. In this way, an organizational
specification abstracts from the individual agents that will
eventually play the roles. Organizational modeling languages
allow to model various aspects of an organization, such as its
structure, work processes and norms.

The idea is that an explicit organizational specification can
be used to organize and regulate collections of autonomous
agents in order to make them more effective in attaining
their purpose or to prevent certain undesired behavior from
occurring. For example, norms, laws and policies can be seen
as constraints imposed by society on the behavior of the
individuals or agents [33].

Although agents are expected to adhere to these constraints,
they might nevertheless decide to violate them. The viola-
tion of a norm, if noticed by other agents, can cause the
violating agent, for example, to suffer a loss of reputation
and/or rebukes. With respect to monitoring and punishing,
the organization might deploy machinery and/or agents. For
example, camera’s and police patrols are used to monitor
speeding of cars. Using agents for monitoring norm violation
has been explored in the context of Brahms in [34]. It can also
be the case that violation is prevented by constraining the set
of executable actions of the agents, e.g. by setting up physical
restraints of getting on the metro if the agent does not have a
ticket.

Some organizational modeling languages come with im-
plementation frameworks [35], [22], [36] that, for example,
allow agents to access and modify the state of the organization
and enforce organizational constraints by applying sanctions
in case of their violation. Organizational modeling languages
allow to model various aspects of an organization, such as its
structure, work processes and norms that should be adhered
to by the agents of the organization.

In real organizations, roles can change and/or new roles can
be created without those changes being reflected immediately
in the organization specification. In such cases, when the role
changes and new roles are deemed effective by the organi-
zation, the organization specification is updated accordingly.
Thus, when modeling and simulating organizations we insist
on an implementation framework that allows for such self-
organizational behavior.

In this paper, we base the modeling of an organization in
Brahms on the well-known MOISE™ organizational modeling
language [24], [22]. MOISE™ specifies an organization in

Sierhuis et al: Towards Organization Aware Agent-based Simulation 65

terms of a structural dimension using the notions of roles
and groups, a functional dimension that describes how global
collective goals should be achieved, and a normative dimen-
sion expressing permissions and obligations for roles, related
to the achievement of (sub)goals. MOISET comes with an
organizational middleware that allows agents to access and
modify the state of the organization, and ensures that certain
organizational constraints are respected. For example, if the
structural dimension specifies that an agent cannot play two
particular roles at the same time, the middleware will prevent
an agent from committing to playing both of these roles.

The MOISE+ middleware [24], [22] is an important first
attempt to separate organization modeling and specification
from the design and implementation of the agents that pop-
ulate organizations. This work differs from ours in that the
framework of MOISE+ is translated in an adhoc way to the
agents, thus every agent has to be modeled and implemented
for the application at hand. Both in MOISE+ and KAoS [37],
[38] the attempt so far have been to directly, but external to
the agent, determine the behavior of the agents that play a role
in the organization. In particular, agents have no choice but to
behave according to the role specification of the role they are
playing. In the framework presented in this paper, the agents
can determine amongst themselves, or together, whether or
not to play certain roles in the organization and commit to
missions and norms.

3.2. Organizational Reasoning

If agents are aware of the organization of which they are a
part, this allows them to reason with and about the organiza-
tion. For example, an agent may be aware of a norm like “one
should always give an answer to a request®, but he might not
agree with it. This means he does not necessarily comply with
the norm, and if he does it might be an unconscious decision
or because it benefits him. He can exploit the existence of
the norm, for example, by always first requesting information
before trying to find it himself. The agent can also accept
a norm. In that case he agrees that the norm is a good one
and he tries to follow it as much as possible. Only in special
situations (e.g. if the norm contradicts another, more important
norm) will he violate it.

Reasoning explicitly about norms is included in a number of
social simulations, see, e.g. [39], [40]. In this paper, we don’t
focus on sophisticated organizational reasoning, but we show
how agents can understand an organizational specification on
which one can build sophisticated reasoning.

4. ORGANIZATIONAL MODELING FRAMEWORK

In this section we describe our organizational modeling
framework for the Brahms language, based on MOISE™T.
Even though we use Brahms as the agent-based modeling
language, the framework is general and can be implemented
in other agent-oriented modeling languages that support the
capabilities needed for modeling the framework concepts (i.e.,
multiple agents, groups, classes, objects, geography, activities,
goals, and communication). We use a some-what modified
UML form to provide the Brahms models. In some cases,

66 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 14, NO. 1, MARCH 2009

where we feel it helps the reader, we provide some Brahms
source code.

4.1. Organization aspect

A MOISE™ structural specification consists of a set of roles
and a set of groups, and the relations between them. Roles can
be related through an inheritance relation, and a role or group
can be related to another group through an “is part of” relation.
Roles can also be related through several kinds of links: an
acquaintance link, a communication link (agents are allowed to
communicate if they play roles with a communication link), an
authority link, and a compatibility link (an agent is not allowed
to play two roles at the same time that are not compatible).
For every authority link there is an implicit communication
link, and for every communication link there is an implicit
acquaintance link.

In Brahms, we model a MOISE* structural specification
in two phases. To model the MOISE™ organizational aspect
in Brahms we have to separate two parts of the organization
structural dimension. First, the agents need to be able to
use concepts defining a MOISE™ organization structure (see

MoiseOrganizationStructureConcept

+ isInstanceOf :ConceptualClass [*]

I |

MoiseRoleConcept MoiseGroupConcept

+ isaMoiseRoleConceptFor :Group[0..1]

+ isAcquintanceOf :MoiseRoleConcept [*]
+isA:MoiseRoleConcept [*]

+ isPartOfGroup :MoiseGroupConcept [*]

+ isaMoiseGroupConceptFor :Class[0..1]
+ isPartOfGroup :MoiseGroupConcept [*]
+ hasSubGroup :MoiseGroupConcept [*]
+ hasRole :MoiseRoleConcept [*]

+ hasAuthorityOver :MoiseRoleConcept [*]
+ isCompatibleWith :MoiseRoleConcept [*]

+ canCommunicateWith :MoiseRoleConcept [*]

Fig. 1. Concepts for modeling MOISE+ organization structure

structure. First, we define classes for both SoccerTeamRole and
SoccerTeamGroup, after which we define the object instances
representing the role and group concepts for a soccer team.

MoiseRoleConcept MoiseGroupConcept

+ isaMoiseRoleConceptFor :Group [0..1]
+isAcquintanceOf :MoiseRoleConcept [*]
+isA:MoiseRoleConcept [*] +hasSubGroup :MoiseGroupConcept [*]

+ isaMoiseGroupConceptFor :Class[0..1]

fig. 1). Second, the agents need to understand and be able to + isPan0Group MoiseGroupConcept [*]

reason with the instantiation of these concepts for a specific

type of organization, e.g. a soccer team (see fig. 2).

4.1.1) Modeling the MOISE™ structural dimension: Simply
speaking, the Brahms MOISE™ organization structure defines
an organization in terms of the roles, groups and links con-
cepts, whereas an instantiation of this representation defines
a specific organization of its kind, with Brahms classes and
conceptual objects for each MOISE™ role and group known in
the organization. If we want agents to be able to dynamically
enter such an organization, the agent needs to learn about both
the concepts (i.e., the roles, groups and links) defined in the
organization structure and the instantiation of these concepts
for the specific organization it enters.

Figure 1 shows the UML class diagram for the MOISE™
concepts in the structural dimension as they are modeled in the
Brahms language. Every agent within the organization needs to
know these concepts (i.e., classes or types) in order to reason
about specific instantiations of these concepts for a particular
organization. There are three general MOISE™ concepts shown
in figure 1 that are defined as conceptual classes in Brahms;
MoiseOrganizationStructureConcept (this is a derived class),
MoiseRoleConcept and MoiseGroupConcept. Every MOISE™
concept in a specific instance of an organization structure
inherits from one of these two classes. The MoiseRoleConcept
class defines the relations for roles in a MOISE™ organization
structure, while the MoiseGroupConcept class defines the
relations for groups in a MOISE™ organization structure.
The MOISE™T role link concepts are modeled as relations
within the MoiseRoleConcept class. MOISE™ discriminates
the role links authority over, communication with, compatible
with, and acquaintance of. In figure 1 these are shown as
MoiseRoleConcept relation attributes. Similarly, the MOISE™
group relations has subgroup and has member roles are shown
in figure 1 as relation attributes.

Figure 2 shows the UML class diagram for an instantiation
of figure 1, namely a MOISE™ soccer team organization

+isPartOfGroup :MoiseGroupConcept [*] +hasRole :MoiseRoleConcept [*]

+ hasAuthorityOver :MoiseRoleConcept [*]
+ isCompatibleWith :MoiseRoleConcept [*] ZF

+ canCommunicateWith :MoiseRoleConcept [*] SoccerTeamGroup
AN
T
team defense
1.
SoccerTeamRole
{> 3 attack
<
ﬁ T
[
po— | compat
leader attacker back
A A
\ [gulh\l/ co'mpal ! A
..... - - - T
1 acq L [
coach player <+ \ middle goalkeleper
q_ - —
aut - -

com
auth

Fig. 2. Concepts for MOISE" soccer team organization structure

Having these soccer team roles and groups defined does not
mean that the agents coming into this organization automati-
cally know about these concepts, or can reason with them. For
this, something needs to happen. Our framework is flexible
enough to define different ways for incoming agents to learn
about the organization structure. Maybe we want to model that
a new “hire” gets a “document” to read to understand the roles,
groups and links in the organization, or someone tells him or
her the information in a formal “intake” session, or he or she
gets pointed to a website. We might want to decide that every
newly created agent automatically knows about the soccer
team organization structure. Of course, we also want to give
agents the capability to define a new MOISE™ organization

structure out of nowhere, or change an existing one.

object MoiseSoccerTeamStructureDoc instanceof
MoiseOrganizationStructure {
initial beliefs:
(current.describesMoiseOrganizationStructureOf =
SoccerTeam) ;

(soc isInstanceOf MoiseRoleConcept) ;
(soc isInstanceOf SoccerTeamRole) ;
(soc.isaMoiseRoleConceptFor = SocRole) ;
(player isInstanceOf MoiseRoleConcept) ;
(player isInstanceOf SoccerTeamRole) ;
(player isA soc);
(player.isaMoiseRoleConceptFor = PlayerRole) ;
(coach isInstanceOf MoiseRoleConcept) ;
(coach isInstanceOf SoccerTeamRole) ;
(coach isA soc);
(coach.isaMoiseRoleConceptFor = CoachRole) ;
(back isInstanceOf MoiseRoleConcept) ;
(back isInstanceOf SoccerTeamRole) ;
(back isA player);
(back.isaMoiseRoleConceptFor = BackRole) ;
(middle isInstanceOf MoiseRoleConcept) ;
(middle isInstanceOf SoccerTeamRole) ;
(middle isA player);
(middle.isaMoiseRoleConceptFor = MiddleRole) ;
(attacker isInstanceOf MoiseRoleConcept) ;
(attacker isInstanceOf SoccerTeamRole) ;
(attacker isA player) ;
(attacker.isaMoiseRoleConceptFor = AttackerRole) ;
(goalkeeper isInstanceOf MoiseRoleConcept) ;
(goalkeeper isInstanceOf SoccerTeamRole) ;
(goalkeeper isA back) ;
(goalkeeper.isaMoiseRoleConceptFor = GoalKeeperRole) ;
(leader isInstanceOf MoiseRoleConcept) ;
(leader isInstanceOf SoccerTeamRole) ;
(leader isA player);
(leader.isaMoiseRoleConceptFor = LeaderRole) ;
(attack isInstanceOf MoiseGroupConcept) ;
(attack isInstanceOf SoccerTeamGroup) ;
(attack.isaMoiseGroupConceptFor = AttackGroup) ;
(defense isInstanceOf MoiseGroupConcept) ;
(defense isInstanceOf SoccerTeamGroup) ;
(defense.isaMoiseGroupConceptFor = DefenseGroup) ;
(team isInstanceOf MoiseGroupConcept) ;
(team isInstanceOf SoccerTeamGroup) ;
(team. isaMoiseGroupConceptFor = TeamGroup) ;
(attack isPartOfGroup team);
(defense isPartOfGroup team) ;
(team hasSubGroup attack) ;
(team hasSubGroup defense) ;
(team hasRole leader) ;
(team hasRole coach) ;
(attack hasRole leader) ;
(attack hasRole middle) ;
(attack hasRole attacker);
(defense hasRole goalkeeper) ;
(defense hasRole back) ;
(defense hasRole leader);
(goalkeeper hasAuthorityOver back) ;
(coach hasAuthorityOver player) ;
(leader hasAuthorityOver player) ;
(player canCommunicateWith player) ;
(leader isCompatibleWith back) ;

Fig. 3. Brahms code of MOISE™ soccer team organization structure

To do this, we separate the definition of the MOISE™*
organization structure concepts and the soccer team roles
and groups from the knowledge that agents can get about
these defined concepts. Figure 3 shows the Brahms code
of the definition of the knowledge about a MOISE™ soccer
team organization structure, as an object instance—named
MoiseSoccerTeamStructureDoc—of the class MoiseOrganiza-
tionStructure. This object contains the knowledge (in terms of

Sierhuis et al: Towards Organization Aware Agent-based Simulation 67

beliefs stored inside the object) about the soccer team struc-
ture. Any team member agent can now “read” the information
stored in this object, at which point the agent gets the beliefs
stored in the objects. How and when the agent read this object
can be defined in many different ways in the Brahms model.
The point is that the agent gets the knowledge about the
organization structure only when it has reads the information
from the object.

Together, figure 1, figure 2, and figure 3 implement figure
3 (Soccer team structure using MOISE™) from Hiibner, et
al.[22].

4.1.2) Instantiating the Ajax Soccer Team Organization:
Now that we have defined all the MOISE™ concepts in the
Brahms model, we can instantiate the model for the Ajax
Soccer Team example. First we need to create the Ajax Soccer
Team organization model. This is done by creating object
instantiations for the Ajax organizational concepts, as defined
by the MOISE™ soccer team organization structure in figures 2
and 3. There are two parts to a MOISE™ organization that need
to be instantiated; groups and roles. Figure 4 shows the three
MOISE™ group objects for Ajax. There as an AjaxTeam object
that represents everyone that is part of the Ajax soccer team.
Then there is an AjaxDefense and an AjaxAttack group object.
These objects represent the defense and attack groups of the
Ajax soccer team.

MoiseGroup

- hasSubGroup :MoiseGroup
- isPartOfGroup :MoiseGroup

Ay

SoccerTeam

+ hasLeader:LeaderRole [0..1]
+ hasCoach:CoachRole [*]
- hasSoccerField :SoccerField

T

TeamGroup DefenseGroup AttackGroup

+ hasMidfielder :MiddleRole [*]
+ hasAttacker :AttackerRole [*]

+ hasGoalKeeper :GoalKeeperRole [0..1]
+ hasDefender :BackRole[*]

: x A

AjexDetonse AlaxAttack

Fig. 4. MOISE™ groups and objects for the Ajax organization structure

We also need to create all the agents in the Ajax or-
ganization, i.e., the coach and all player agents. Figure 5
shows the coach and four player agents involved in our
example. Agent Rinus_Michels is the coach (CoachRole). The
current Ajax players include agents cm_1 (central midfielder—
MiddeRole) and Im_I (left midfielder—MiddleRole), and
agent Johan_Cruijff who can play both as an attacker
or as a midfielder (AttackerRole and MiddleRole). Agent
Sjakie_Meulemans is the new forward (AttackerRole) of Ajax,
who is joining the team. When Sjakie joins the team, coach
Michels wants Sjakie to play on Johan’s original forward
position (left forward) and wants Johan to play left midfield,
which means that left midfielder Im_1 has to sit out the next
game. This is how the scenario starts.

68 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 14, NO. 1, MARCH 2009

MoiseRole

+isAcquintanceOf :MoiseRole [*]

+ hasAuthorityOver :MoiseRole [*]
+isPartOfGroup :MoiseGroup [*]
+isCompatibleWith :MoiseRole [*]

+ canCommunicateWith :MoiseRole [*]

- isaMoiseRoleConcept :MoiseRoleConcept

2

SocRole

T 1

+isCoachOf :TeamGroup [0..1]

a Zﬁ ?
AttackerRole MiddleRole

F—*11

| Johan_C ruijff || em 1 |[m1]

CoachRole PlayerRole

Sjakie_Meulemans

Fig. 5. MOISE™ roles and agents for the Ajax organization structure

In order to play their roles, the agents need to have knowl-
edge about the Ajax team organization, based on the organiza-
tion structure as defined in figures 3-5. This is represented in
figure 6. How do the agents get this knowledge? As mentioned
before, this can be done in different ways. In our example, they
get this knowledge by “reading” the MoiseSoccerTeamStruc-
tureDoc from figure 3. However, this is general knowledge
that all soccer agents know. What about the Ajax specific team
organization knowledge, partially represented in figures 4-6?
Let us assume that there is another document, called the Ajax-
FormalOrganizationDoc, and the coach and the current Ajax
player agents also have knowledge of this document, by having
read it (see figure 7). Figure 7 shows the implementation in
Brahms of the MoiseSoccerTeamStructureDoc object, shown
as a UML diagram in figure 6. However, the new player, agent
Sjakie_Meulemans has not yet read this document.

hasCoach

|RinusfMicheIs TeamAjax

‘ hasSubgroup
AjaxAttack

hasAttacker

Johan_C ruijff
Sjakie_Meulemans

Fig. 6. MOISE* agents and their relations for team Ajax

=3
D
n

horityOver

hasMidFielder

hasAttacker

In our Ajax soccer example, agent Rinus_Michels, the
coach, will have all the information about the Ajax organi-
zation as beliefs when he talks to agent Sjakie, thus commu-
nicating the information about the soccer team organization.
Agent Sjakie_Meulemans thus learns about the organization
from the coach agent. As mentioned before, we can model
different ways for an agent to find out about the organization
structure.

All MoiseRole agents will be able to reason over its beliefs

object AjaxFormalOrganizationDoc instanceof
MoiseOrganizationStructure
{
initial beliefs:
(current.describesFormalOrganizationOf = TeamAjax) ;
(TeamAjax.hasSoccerField = Arena) ;
(AjaxAttack isPartOfGroup TeamAjax) ;
(AjaxDefense isPartOfGroup TeamAjax) ;
(Rinus_Michels isaMoiseRoleConcept coach)
(TeamAjax hasCoach Rinus_Michels) ;
(cm_1 isaMoiseRoleConcept player) ;
(cm_1 isaMoiseRoleConcept middle) ;
(cm_1 isPartOfGroup AjaxAttack);
(Im_1 isaMoiseRoleConcept player) ;
(lm_1 isaMoiseRoleConcept middle) ;
(lm_1 isPartOfGroup AjaxAttack);
(Johan_Cruijff isaMoiseRoleConcept player) ;
(Johan_Cruijff isaMoiseRoleConcept leader) ;
(Johan_Cruijff isaMoiseRoleConcept middle) ;
(Johan_Cruijff isaMoiseRoleConcept attacker) ;
(Johan_Cruijff isPartOfGroup AjaxAttack);
(Sjakie Meulemans isaMoiseRoleConcept player) ;
(Sjakie Meulemans isaMoiseRoleConcept attacker);
(Sjakie_Meulemans isPartOfGroup AjaxAttack) ;}
} //end AjaxFormalOrganizationDoc

Fig. 7. AjaxFormalOrganizationDoc object in Brahms source code

group MoiseRole memberof MoiseBaseGroup {

thoughtframes:
thoughtframe tf WhoHasAuthorizationOverWhom {
variables:
foreach (MoiseRoleConcept) roleconceptl;
foreach (MoiseRole) roleinstancel;
foreach (MoiseRoleConcept) roleconcept2;
foreach (MoiseRole) roleinstance2;
when (knownval (roleconceptl hasAuthorityOver roleconcept2)
and knownval (roleinstancel isaMoiseRoleConcept roleconceptl)
snd knownval (roleinstance2 isaMoiseRoleConcept roleconcept2)
and knownval (roleinstancel !'= roleinstance2))
do {
conclude ((roleinstancel hasAuthorityOver roleinstance2)) ;
}//do
}//tf_WhoHasAuthorizationOverWhom
}//MoiseRole

Fig. 8. MOISE™ Role Authorization Rule in Brahms source code

about the MOISE™ concepts. For example, in order to decide
who in the organization has authority over whom, the agents
inherit the production rule from figure 8. This rule spells out
that if a MOISE™ role concept, defined for a specific domain,
has authority over another MOISE™ role concept (see figure 2)
and an agentl, instance of the MoiseRole group, is playing the
role of that role concept, and a second agent2 is playing the
role of the role concept, over which the first role concept has
authority, then agentl has authority over agent2. The conclude
statement in the rule in figure 8 creates a new belief for the
agent executing this rule. This rule is an example of how
agents are able to reason with and about defined MOISE*
concepts in the model.

4.2. Behavioral aspect

Next in our framework, we model the behavioral aspect of
an organization using the MOISE™ functional specification.
A MOISE™ functional specification consists of a number of
schemes representing a global organizational goal in a goal-
decomposition tree. A scheme is a joint activity template for
the organization, describing which agents should participate

in the scheme. Each goal is assigned to an agent through so-
called missions. The agent (or agents) that commit to a mission
in a scheme commits itself to accomplishing the goals assigned
to that mission. A scheme contains a plan for executing the
scheme root goal and sub-plans for its sub-goals. There are
three types of plans; sequence plans, choice plans, and parallel
plans.

For agents to reason and behave based on these MOISE™
functional concepts, the agent model needs to include a
representation of these concepts, similar to the MOISE™ struc-
tural specification described in the previous section. Figure 9
provides the UML class diagram for the MOISE™ functional
concepts defined in Brahms.

MoiseFunctionalConcept

i

+ sequenceMoisePlan :[0..1]
+ nextMoiseGoallnSequence :MoiseGoalConcept [0..1]
+ isPartOfMission :MoiseMissionConcept [*]

MoiseSchemeConcept MoiseGoalConcept

+ topMoiseGoal :MoiseGoalConcept [0..1]
+ hasPlan:MoisePlanConcept [*]
+ hasMoiseMission :MoiseMissionConcept [*]

MoiseMissionConcept

+ numberOfAgentsToCommit :int[0..1]

+ firstMoiseGoallnMission :MoiseGoalConcept [0..1]
+ hasMoiseGoal :MoiseGoalConcept [*]

+hasAgentC ited :MoiseB roup ']

MoisePlanConcept

+sequenceMoisePlan :[0..1]
+topMoiseGoal :MoiseGoalConcept [0..1]

+ choiceMoisePlan :[0..1]

+ parallelMoisePlan :[0..1]

+ isMoiseSubPlanFor :MoisePlanConcept [0..1]
+isPlanF i ‘Mo

oncept [*]

Fig. 9. Concepts for modeling MOISE™ functional specification

Having the MOISE™ concepts defined in figure 9 allows us
to model a particular scheme for a soccer team. We again use
the example from Hiibner, et al.[22], see also Section2.

{ Goal: 1

T Mission: ma
— Goal: l
f shot at the opponent’s goal |

Mission: m2 |
Goal: '

i
f kick the ball to the goal area;

1 Mission: m1 \ /
i Goal: 1 Plan: 3333 '
get the ball | plan for field placement N Goa{fﬂ'ss‘on'mz i
,,,,,,,,,,,,,,,,, : i
ga&neu 3 go to the opponent back linei
A sssssssessssessssassnsaned
\L \J Mission: m1 :
Tt ooy \L \ Goal: '
1 Mission: m1 i ikick the ball to (agent committed to m2) :
! Goal: . N\ e '
1go towards the opponent field | presssrrseNecsresserrrsrrearereney
O | Mission: m3 l
| Goal: {
prssszssssssssssssshass | be placed in the opponents goal area 1
}Mission:mé ' ! e S |
' oal: i

3 be placed in the middle 3

Fig. 10. MOISE™ soccer team attack scheme (borrowed from [22])

Figure 10 describes a MOISE™ attack scheme for a soccer
team. It describes how three players, performing the scheme
jointly, can score a goal. Not shown in figure 10, but stated
in [22], each of the three missions (ml, m2, m3) has a
cardinality constraint stating they should be committed to by
only one player. This constraint defines that three different
players have to be committed to the missions to execute the
attack scheme. Each mission has a set of goals associated with

Sierhuis et al: Towards Organization Aware Agent-based Simulation 69

it that defines the tasks of each of the three players. Thus, the
scheme, together with its missions, describes a joint activity
between three agents. Besides goals and missions, the scheme
in figure 10 provides plans for the agents. Since each agent
knows what goals it needs to accomplish based on the mission
it has committed to, the tree-structure provides the sequence
in which each agent should obtain these goals.

Three missions need to be executed in parallel by three
different players, in order to score a goal (see the three sub-
goals under the parallel sub-plan in figure 10). At the start of
the soccer attack scheme, three players have to agree on the
team goal score a goal. This is step 1 in the execution of the
scheme. How this agreement is to take place is not defined by
MOISE™. This is the kind of work practice that needs to be
developed by the players in the team (c.f. [21]). The next step
is for each player to commit to one of the missions. Finally,
based on their practice of executing this mission, each player
performs the corresponding activities in the correct order. For
example, a player that commits to mission m/ knows that it
needs to sequentially perform the sub-goals get the ball, go to
the opponent field, and lastly kick the ball to (agent committed
to m2).

The scheme in figure 10 shows that there is a sub-plan
with parallel goals, each assigned to an agent with a different
mission. In compliance with the cardinality constraint for the
three missions, three players perform activities in parallel
to obtain their own sub-goals. If the team has practiced
this enough, the team members will seamlessly perform this
parallel plan. If not, they will fail the overall team aim of
scoring a goal.

Figure 11 shows in UML how the soccer attack scheme from
figure 10 is implemented in Brahms given the MOISE™ con-
cepts defined in figure 9. Having defined these attack scheme
concepts, as shown in figure 11, Brahms agents can get beliefs
about these concepts, plus with the declarative knowledge
they need to execute the scheme. Figure 12 shows the partial
Brahms code for the MoiseSoccerTeamFunctionalSpecification

! object that implements the MOISE™ attack scheme and the

UML diagram of figures 10 and 11.

MoiseSchemeConcep
JAN

MoiseGoalConcept

T % %%: !
T
Moi | ’—‘—‘—‘
opoiseGoal _ \ _ _ __ feq,"el'”,‘b shot_at_the_opponent_goal
plan_for_scoring_a_goal[>~ ~ 1\~ - - =9

-7 .. kick_the_ball_to_the_goal_are:

A N
\ L.

sequence(2) |

‘ planJorJlem,placement‘ ‘

go_to_the_opponent_back_line

! sequence(3)

‘ get_the_ball kick_the_ball_to_agent_committed_in_m2 ‘

pargllel() ' | ! parallel(3)

——«‘ go_towards_the_opponent field | ' be_placed_in_the_opponent_goal_are:
' parallel(2)
be_placed_in_the_middle_fiel

Fig. 11. Concepts for implementing the MOISE™ soccer team attack scheme,
based on the definitions from figure 9

70 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 14, NO. 1, MARCH 2009

object MoiseSoccerTeamFunctionalSpecification instanceof
MoiseOrganizationStructure

{

initial beliefs:

(current.describesMoiseFunctionalStructureOf = SoccerTeam) ;
(SoccerTeamAttackScheme isInstanceOf MoiseSchemeConcept) ;
(SoccerTeamAttackScheme hasMoiseMission ml) ;
(SoccerTeamAttackScheme hasMoiseMission m2) ;
(SoccerTeamAttackScheme hasMoiseMission m3) ;
(SoccerTeamAttackScheme. topMoiseGoal = score_a_goal) ;
(SoccerTeamAttackScheme hasPlan plan_for_scoring_a_goal);
(ml isInstanceOf MoiseMissionConcept) ;
(ml hasMoiseGoal score_ a_goal);
(ml hasMoiseGoal get_the_ball);
(ml hasMoiseGoal go_towards_the_opponent_ field) ;
(ml hasMoiseGoal kick_the_ball to_agent_committed in_m2);
(ml.firstMoiseGoalInMission = get_the_ball);
(ml.numberOfAgentsToCommit = 1) ;
(m2 isInstanceOf MoiseMissionConcept) ;
(m2 hasMoiseGoal score_a_goal);
(m2 hasMoiseGoal be_placed in_the_middle_field) ;
(m2 hasMoiseGoal go_to_the_opponent_back_line) ;
(m2 hasMoiseGoal kick_ the ball to_the_goal_area);
(m2.
(m2.
(m3
(m3
(m3
(m3
(m3.

numberOfAgentsToCommit = 1) ;
isInstanceOf MoiseMissionConcept) ;
hasMoiseGoal score_a_goal);
hasMoiseGoal be_placed in_ the_opponent goal_area);
hasMoiseGoal shot_at the_ opponent goal) ;
firstMoiseGoalInMission =
be placed_in_the_ opponent goal_area) ;
(m3.numberOfAgentsToCommit = 1) ;
(plan_for_scoring_a_goal isInstanceOf MoisePlanConcept) ;
(plan_for_ scoring_a_goal isPlanForMoiseScheme
SoccerTeamAttackScheme) ;
(plan_for_scoring_a_goal.topMoiseGoal = score_ a_goal);
(plan_for_ scoring_a_goal.sequenceMoisePlan(1l) =
get_the ball);
(plan_for_ scoring_a_goal.sequenceMoisePlan(2) =
plan_for field placement) ;
(plan_for_scoring_a goal.sequenceMoisePlan(3) =
kick_the_ball to_agent committed in m2);
(plan_for_ scoring_a_goal.sequenceMoisePlan(4) =
go_to_the_opponent back_line) ;
(plan_for_scoring_a_goal.sequenceMoisePlan (5)
kick_the ball to_the_goal_area);
(plan_for_ scoring_a_goal.sequenceMoisePlan (6)
shot_at the_opponent goal);
(plan_for_ field placement isInstanceOf MoisePlanConcept) ;
(plan_for_field placement.isMoiseSubPlanFor =
plan_for_scoring_a_goal);
(plan_for_field placement.topMoiseGoal = score_a _goal);
(plan_for_field placement.parallelMoisePlan(l) =
go_towards_the opponent_ field) ;
(plan_for_field placement.parallelMoisePlan(2)
be placed_in_the middle field);
(plan_for field placement.parallelMoisePlan(3)
be_placed in_the_opponent goal_area) ;

Fig. 12. Brahms code of MOISE™T soccer team attack scheme from figure 11

4.2.1) Individual Agent Behavior: We illustrate how agents
in our example obtain the code they need to exhibit the behav-
ior appropriate for their role. The Brahms language allows us
to model the behavior of our agents from the generic MOISE™
behavior, to the domain specific soccer behavior and finally to
the individual soccer player agent, depending on the roles these
agents play in the organization. In this section we describe
how such behavior might be modeled, given the MOISE™
structure we discussed so far. In our example, Ajax coach
agent Rinus informs agent Sjakie during the training session
about the Ajax team organization. Thus agent Sjakie obtains
the beliefs that correspond to the MOISE™ Ajax organization

firstMoiseGoalInMission = be_placed in the middle_field)

as presented in Figure 73. After agent Rinus talks to agent
Sjakie, he goes and talks to both agent Johan and cm_l1.
Consequently, agent Johan talks to agent Sjakie about his role
in the attack scheme. After this agent Johan tells agent Rinus
that he spoke with agent Sjakie. Last, agent Rinus tells all the
three agents to go and execute the attack scheme. Figure 13
shows agent Rinus talking to agent Sjakie and thus transferring
its beliefs. Together this piece of the simulation shows the
work practice performance of the Ajax organization, given our
scenario. This agent interaction is not part of the MOISE™
functional structure as discussed in the previous section. The
explanation of the joint agent organization performance of the
MOISE™ soccer attack scheme comes next.

Figure 14 shows the execution of the soccer attack scheme
by the three agents performing mission ml, m2 and m3.
Mission ml is committed to by agent cm_1, m2 by agent
Johan and m3 by agent Sjakie. The execution of the scheme
starts for each agent, at the same time, with the execution
of the workframe wf_ExecuteMission. The code for this, and
other workframes and activities, can be found in the Appendix.
The ExecuteMission activity is domain dependent, and is
implemented in the domain group PlayerRole. This way all
soccer player agents will inherit the same activity, and can
execute the mission in the same way.

In our example scenario, the only activity that our agents
can execute is PlayingSoccer. This activity is the main activity
that each soccer player agent executes, based on the mission
that it is committed to. All sub-activities for playing soccer are
defined as workframes inside the PlayingSoccer activity (see
figure 15). For source code of this activity, see the Appendix.

4.3. Collaboration aspect

The process of collaboration, essential for team work is not
defined by MOISE*: a) how the three players on a soccer
team decide together to dynamically and instantly create a
group or sub-team to execute the attack scheme, b) how the
players decide who is committing to which mission, and c)
what activities the players should perform to obtain the goals
associated with their mission. These collaboration aspects are
left to the soccer team, or even more specifically, to the
individual players of the soccer team.

In order to model a group of players deciding to manage the
performance of a MOISE™ scheme, we adhere to the team-
work model as described by Sierhuis, et al. in [41]. In this
model, the dynamic creation of a group or team of agents
follows five distinct phases (see figure 16). Within the soccer
team, using the team-work model, the soccer team members
can dynamically form sub-teams to fulfill the team’s utlitmate
goals of scoring more goals than the opposing team.

4.4. Regulation aspect

Regulations in organizations are meant to improve the
efficacy of its operations. In human societies norms can be
described as the unwritten rules of the organization, in contrast

3Agent Sjakie_Meulemans gets a lot more beliefs than are shown in
Figure 7, because agent Rinus_Michels tells agent Sjakie about all the Ajax
team agents, whereas Figure 7 only shows the agents relevant for the example.

09:49:53 P|

" agent Rinus

wi: wf_BeingAlive

C... | ca: BeingAlive
wif: wi_DuringThePractice |

ca: Practice

wi: wf_Tal.. | wf: wf_Tal..
cw: TalkA... | CW... | CW...

2009 09:49:33 PM
{" agent Sjakie (leftiforward)

wi: wf_BeingAlive

C... | ca: BeingAlive
wi: wf_DuringPractic

ca: Practice

o

il al<

04/29/2009 09:49:33 PM
" agent Johan (left forward)

W §
wif: wi_BeingAlive | wif: wi| Tal... | Wf:v
c.. | ca: BeingAlive lcw..A E()
wif: wi_DuringPra... | w

ca: Practice | c

w

c

Fig. 13. Brahms sim screenshot of the agent activity timeline for agent Rinus,
agent Sjakie, and agent Johan. The vertical (blue) arrows in the screenshot
show agent communicatiion over time. The execution of workframes and
activities is shown as the (blue, skin and green) colored horizontal bars, while
the thoughtframes (reasoning rules) are shown as little lightbulb icons above
the activities.The horizontal (green) bar at the top, above the (black) timeline
bar, shows the location of the agents (i.e., the PracticeFieldArea). Agent Rinus
is first communicating to agent Sjakie during the Practice activiity. Next Rinus
is talking to agents Johan and cm_1 (agent cm_1 is not shown, but is shown
as a little hand icon underneath agent Rinus). Then you can see agent Johan
communicating with agent Sjakie, and the with agent Rinus. All this is being
done during the execution of the activity Practice.

with the laws and policies that comprise the written rules.
As soon as we simulate an organization, having unwritten
rules is impossible. Therefore, unwritten has to be translated
to “unofficial.” Norms, policies and laws have in common
that individuals can decide to violate them. The violation of a
norm, if noticed by other agents, can cause the violating agent,
for example, to suffer rebukes and/or a loss of reputation.
However, violation of a norm cannot be punished by the
institution. The violation of policies and laws, if detected, can
lead to the same effects as violation of norms, but violation
of policies and laws can also be punished by the institution.

Sierhuis et al: Towards Organization Aware Agent-based Simulation 71

042972009 b:49:33 P
" agent Central Mid 1

Q 90
wi: wi_BeingAlive wi:wi_BeingAlive
c... | ca: BeingAlive ca: BeingAlive
[[] [: wi-DuringPractice wi: wi_ExecuteMission
[[[] ca: Practice ca: ExecuteMission
wi: wi_PlaySoccer
ca: PlayingSoccer
wi.... | wf: wf_GoToward...
ca.. | ca: GoingToward... -
wi:_.| wi: wi_MoveToFr... -
pa.. | mv: MoveOverFie... -
PracticeFieldArea LeftMidFieldArea LeftFieldAtGoal1SideArea

o 9:33 PM
" agent Johan (left forward)

Wiz wi_BeingAlive WI:wi_Tal... | wi: wi_BeingAlive -
c... | ca: BeingAlive cw.,,lcw... ca: BeingAlive
Hl wi: wi_DuringPra... | | wi: wi_ExecuteMission
Hl ca: Practice ca: ExecuteMission
Wi: wi_PlaySoccer
ca: PlayingSoccer
Wi: wi_GoToTheBackLine wi:w_..
ca: GoingToTheOpponen... ca..
WI: wi_MoveToTheBackL... Wi |
mv: MoveOverField pa..
PracticeFieldArea

‘ GoallArea

0412912008 09:49:33 PM
" agent Sjakie (left forward)

Q Q
wi: wi_BeingAlive
¢... | ca: BeingAlive
||| ‘wi: wi_DuringPractice [W Wi_ExecuteMission
Hl ca: Practice ca: ExecuteMission
‘wi: wi_PlaySoccer
ca: PlayingSoccer
wi: wi_.
j ca...
pa...
MidMidFieldArea FrontField... LeftFiel.. LeftFieldAt.. GoallA...
() SoccerBall
[] [mzbeing-- | []
Fig. 14. Brahms sim screenshot of the agent activity timeline for agent

Rinus, agent Sjakie, and agent Johan.

¥ 3% composite_activity PlayingSoccer
>
>

v

[E wf_GettingTheBall

[® wf_GoTowardsTheOpponentField
[E wf_GoToMidfield

[® wf_GoToTheirGoal

[® wf_GoToTheBackLine

[® wf_PassTheBall

[wf_KickTheBallToTheGoalArea
[® wf_ShotAtTheOpponentGoal

Fig. 15. Brahms sim screenshot of the agent activity timeline for agent
Rinus, agent Sjakie, and agent Johan.
Phase Teamwork Phase
Number

1 Recognition of the need of help from other agents

2 Team formation

3 Ongoing coordination and team maintenance

throughout task execution
4 Recognition of resolution or impasse
5 Team disbanding

Fig. 16. Teamwork phases to dynamically create and dismember teams

72 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 14, NO. 1, MARCH 2009

Focus Individual Team
Subject
Individual | Individual goal for self | Individual goal for the
team
Team Team goal as it applies | Team goal
to the individual

Fig. 17. Four distinct teamwork goals agents have to juggle

As we want to be able to model the full richness of
organizations and the agents that populate those organization,
we have to be able deal with all possible variations of dealing
with norms, policies and laws:

e norms can, but need not be explicitly available in the
institution. For example, they can be written in files
accessible to all members, but they can also be considered
common knowledge and exist in the mental models of the
agents that realise the organization. of the organization.

« members of the organization can, but need not be, aware
of the norms, policies and laws.

e norms in human organizations are the unofficial rules of
the organization. Therefore, enforcement of norms is not
done directly, but indirectly by the reactions of others
agents to observed norm violation.

« enforcement of policies and laws can be done by con-
straining the set of executable actions of the agents
(e.g. physical restraints of getting on the metro if the
agent does not have a ticket), or by monitoring of agent
behavior and having ways of punishment if a violation
has been detected (e.g. getting a speeding fine if caught).

o With respect to monitoring and punishing, the organiza-
tion might deploy machinery and/or agents. For example,
camera’s and police patrols are used to monitor speeding
of cars.

The example scenario of Sjakie does not touch upon the
regulations in the Ajax team, with the possible exception of the
coach Rinus Michels have the authority, apparently accepted
by all team members, to determine who plays what role and
when. It is not clear from the scenario whether this authority is
explicit in the organization specification, or implicit. It could
be an emergent property of the current team that can be highly
dependent on the characters in the team (including the coach).
It could be also a long standing emergent property of the
team that is consistent over the slowly, but gradually complete
consistency of the team. The last case is an example of a
tradition or culture of the team that is reasonable robust against
changing membership.

In the implementation of the example in Brahms, we chose
to let the agents adopt the regulations in their behavior.

4.5. Common Ground aspect

Upon their first encounter with a previously unknown orga-
nization actors need to gain knowledge about this organization
to be able to successfully participate in it. Knowledge about
an organization is needed to understand the opportunities
the organization creates for the actor, and to be able to
reason whether these opportunities are beneficial to the ac-
tor. Moreover, agents may create new organizations (in the

broadest sense of the word) and thus share new knowledge
amongst the actors within such a newly created organization.
That is, we allow for the possibility that agents self-organize
themselves into a group, team or organization. We first discuss
the prerequisites for obtaining knowledge about an existing
organization as well as the prerequisites for common ground in
creating a new organization, and illustrate the concepts using
the soccer team example.

The most important prerequisite in our approach for or-
ganization and activity aware agents is that agents possess
the basic concepts to represent organizations, groups, roles,
relations, and norms. These are generally recognized as the
most important concepts for modeling organizations and are
the building blocks we need to enable agents to reason about
organizations [42]. Here we thus assume that all agents, as a
minimum, have access to the abstract organization concepts
used in MOISE*. In order to know what a soccer team is,
an agent should at least know what it means to be part of
a group, to play a role within a group, and to be linked in
various ways with other roles. How this is done was discussed
in section 4.1. Although in principle it might be possible to
learn such concepts, we do not consider this possibility.

In addition to all agents having these basic concepts, at
least some of the agents must have knowledge about the
structure of the particular organization. For example, some
agents may have knowledge of what a soccer team is, and,
conversely, if no agent that is part of a multi-agent system
knows about soccer teams, there is no possibility for those
agents to play a role in such a team. Although agents may not
have this knowledge themselves, at least one agent they are
linked to, or the organization they participate in, must be able
to provide this information. This still does not mean, however,
that an instance of a soccer team exists; it only means that
the conceptual knowledge to represent and reason about such
a team is available. Moreover, each agent might have only
partial knowledge about the organization they are member
of. An agent may have only a partial understanding of the
links between roles (authority, communication, compatibility,
acquantaince). Although in our soccer example this may be
somewhat counterintuitive, an agent might know about the
goalkeeper role, but not that this role is part of a soccer team
(group).

Besides knowledge of basic organizational concepts such
as roles, and concepts about particular organizations such as
soccer teams, an agent may also have knowledge about a
particular instance of an organization. For example, an agent
may know that Ajax is a well-known soccer team in The
Netherlands. In this paper we assume that anyone playing a
role in an existing instance of an organization is aware of the
existence of this organization. For example, an agent playing
the goalkeeper role in Ajax will be assumed to be aware of
the existence of Ajax and it being a member of Ajax.

In the case of Sjakie, we assume that Sjakie knows about
and is well aware of all the concepts related to soccer teams
and knows that both FC Volendam and Ajax are instances of
the soccer team organization structure. Within organizational
modeling approaches such as MOISE™, it is assumed that
knowledge about the Ajax organization is readily available

to agents that are part of the organization, by means of the
organizational “layer” in the system.

In contrast we emphasize the importance of dynamically
sharing information that is distributed and not centrally avail-
able. To continue the example, in order for Sjakie to participate
in the Ajax team, common ground needs to be established
between Sjakie and the other members of the Ajax team. For
example, there is a need to coordinate the roles that different
agents will play. There is a whole range of coordinating mech-
anisms that are used in organizations, varying from consensus
reaching debates, to having an authoritative role dictating
how it will be done. For example, assuming it iS common
knowledge that there can be at most one central forward player,
team members might debate and argue about who plays that
role. However, as is common in the soccer domain, in our
example scenario the team coach decides on these matters
and delivers his decision by verbal communication. As such,
the coach informs Sjakie and the rest of the team through
communication that Sjakie will play the central forward role.

The key capability that is needed to participate in an existing
organization is the ability to communicate “partial documents”
or templates that represent aspects of a particular organization
(whether this is an instance or only a conceptual scheme)*. In
the scenario, Sjakie does not need to be informed about soccer
in general, but he needs to be informed of his role, the roles
of the other team members and the team regulations, as well
as the attack scheme and who commits to the missions in the
scheme. In our example, a minimal soccer team template, i.e.
an instance of a soccer team document in Brahms, instantiated
only with Sjakie, Johan, and cm_1 as the central roles, is
communicated to Sjakie. Rinus relies on Johan to provide
Sjakie with a template in which all roles and commitments
are instantiated with a particular player.

Additional capabilities are needed when agents self-organize
into a new organization. For example, agents come to the
understanding that they share a goal of playing soccer may
self-organize themselves temporarily in soccer teams that
previously did not exist. A good example are informal neigh-
borhood gatherings where soccer is played. As before, agents
need to be aware of the existence of each other to be able to
communicate and reach an agreement about the organizational
structure. Although MOISE™ facilitates dynamic creation of
groups, it is not as natural for simulation purposes to have an
organizational layer available that coordinates such creation.
We believe that agents should be able to establish a common
ground through dynamic interaction about a new created
organization. This emphasizes the necessity to coordinate.
Instead of a top-down approach, we advocate a bottom-up
approach where agents know, for example, which role they
are able or want to play, but need to coordinate with other
agents to reach a common agreement.

In order to facilitate such dynamic processes of organization
creation, we believe it is sufficient to differentiate between

4If we would modify our example and Sjakie would not yet be recognized
as a talented player, but would be assumed to enter a soccer field for the first
time, Sjakie would have to be informed of the soccer conceptual scheme first
in order to gain a basic understanding of soccer. For example, Sjakie should
be informed that it is not possible to play two different roles at the same time.

Sierhuis et al: Towards Organization Aware Agent-based Simulation 73

different statuses of organizations. Apart from an organization
that “exists” (an actual instance of a conceptual scheme that
is realized by agents playing the roles of the organization)
we also allow for an organization that is “under construction.”
Agents, moreover, need to commit to particular roles within
the new organization before a status change from ‘“under
construction” to “existing” can be made. Such commitment is
established through a process of interaction and “debate” that
gives rise to an actual (temporary) organization. This process,
again, is facilitated by the exchange of templates (partially
instantiated “documents®). Similar arguments can be made
for organizations that are in “transition“, i.e. regarding the
reorganization of organizations as discussed in e.g. [1].

4.6. Environment aspect

The Brahms modeling and simulation framework is strong
in modeling and simulating both real time and spatial aspects
of the environment, see e.g. [20]. For example, the soccer
field on which the agents are “playing soccer” is represented
as areas part of the geography model. The geography model is
a set of hierarchical conceptual areas representing soccer field
locations (see figure 18). Agents and objects (e.g. the soccer
ball) are moving in these location areas. Figure 19 shows the
movement of the soccer ball through the soccer field locations,
as it is kicked by the agents.

000 Geography Model

I fct

adf ¢ are ®att @ rel

v BaseAreaDef
v
> Building
> City
> World
v FieldArea

» & BackFieldArea
» & DugOutArea
v - FrontFieldArea
| 2
>
v
& GoallArea
& LeftFieldAtGoallSideArea

&5 FrontFieldArea__GoallArea
&5 FrontFieldArea__LeftFieldAtGoallSideArea
&10 MidFieldArea__FrontFieldArea

>

| 2

| 2

& Goall

& GoallArea

& LeftFieldAtGoal1SideArea
& LeftMidFieldArea

&> MidFieldArea

& MidMidFieldArea

&> PracticeFieldArea

VVVVYVYYVYY

Fig. 18. Brahms Geography Model for a Soccer Field

Regarding realistic modeling and simulation of organiza-
tions, an important aspect is that agents might be incapacitated
to fulfill their roles fully or even at all. What is still a
matter of research is how to model the consequences of such
events. A major issue is to what extent the organization, i.e.
other members of the organization know about the problem.
Thus the issue of common grounding is closely related to
the environment aspect. For example, consider a situation

74 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 14, NO. 1, MARCH 2009

FrontField... LeftFiel.. LeftFieldAt.. GoallA.. Go..

09:50:13 PM 09:50:33 PM 09:50:53 PM

wi... wi: wf_Bei... wi:...

m... mv: being... m...

Fig. 19. Movement of the soccer ball through the soccer field areas

that occurs with some regularity at schools: suppose that a
teacher on his/her way to school gets involved in an accident,
furthermore assume that the nature of the accident disables
the communication channels between the teacher and the
concierge of the school. As long as nobody knows about the
accident and the teacher’s involvement, everybody at school
(concierge, students, etc.) will assume that the teacher will
show up in time for the lectures. The teacher does not show
up. Of course this disrupts the normal flow of events, but the
problem is more complex from an organizational point of view.
Should the role be re-allocated to another agent temporarily
or permanently? Does this imply that the teacher is no longer
a teacher? Or does it mean that the role of that teacher is at
least temporarily assigned to two agents? What if the teacher
suddenly does show up at school with the intention of lecturing
as usual and finds another teacher in front of the class? More
research is necessary to analyse all possible variants of such
problems and the corresponding modeling of the organization
is concerns.

5. CONCLUSION

The framework for organization modeling and simulation
presented in this paper is a first framework that supports orga-
nization aware agents. It is characterised by a clear separation
of the organization in terms of a structural and behavioral
specification, and the agents without which the organization
cannot exist. The autonomy of the agents implies that the
organization cannot control the way agents reason and try to
behave. It can set up environmental constraints that block an
agent’s actions, but it cannot prevent the agent from deciding
to try to take such actions. In the same way, the norms,
laws and policies of the organization cannot force an agent
to behave in a certain way; they can only entice or convince
an agent to behave accordingly as the punishment or loss of
reputation enacted upon the agent in case of violation might
be prohibitive from the perspective of the agent.

As a consequence, the regulations, and role delegation
within the organization cannot just be put into the “head” of
the agent that is becoming a member of the organization. The
agent has to accept membership, and be informed about the
regulations and role delegation. Informing the agent can be
done by communication by other members of the organization
or by the agent downloading a (partial) specification from a
kind of blackboard facility of the organization.

The performance of the organization, therefore, depends
entirely on the agents that form it. It depends on the extent
to which they adopt the regulations as guidelines for their
behavior on the extent to which they are willing to fulfill their

roles, on their capabilities of fulfilling their roles, and on their
mutual knowledge and understanding of the way that the other
members of the organization fulfill their roles.

An example implementation of the framework has been
made in Brahms and based on the organization modeling
approach MOISE™ . The framework has been instantiated for
soccer teams which in turn has been applied to a scenario
concerning a new team member.

APPENDIX

This appendix presents partial Brahms source code of
the MOISE™ soccer team model. You can download the
complete Brahms soccer model from the SoccerModel folder
on http://tinyurl.com/brahms-soccer-model. To compile and
simulate the model you will need to download and install
Brahms from http://www.agentisolutions.com.

group MoiseRole memberof MoiseBaseGroup {

composite_ activity BeingAlive() {
end condition: detectable;
detectables:
detectable dt_EndBeingAlive {
detect ((current.stop = true))
then end activity;
}//dt_EndBeingAlive

activities:
composite_activity Practice() {
end condition: detectable;

detectables:
detectable dt EndPractice {
detect ((current.start = true))
then end activity;
}//dt_Endﬁ;actice

}//Practice

workframes:
workframe wf ExecuteMission {
repeat: false;
priority: 1;
variables:
foreach (MoiseMissionConcept) mymission;
when (knownval (current.executeMission = mymission) and
knownval (current.start = true))
do {
println c2("Agent %1 is executing mission: %2",
current, mymission);
ExecuteMission (mymission) ;
}//do

}//wf_ExecuteMission
}//composite_activity BeingAlive

}//MoiseRole

Fig. 20. Brahms source code of BeingAlive activity in MoiseRole group.

REFERENCES

[1] A. Lomi and E. Larsen, Dynamics of Organizations: Computational
Modeling and Organization Theories. Menlo Park: AAAI Press, 2001.

[2] M. Hoogendoorn, C. Jonker, M. Schut, and J. Treur, “Modeling cen-
tralized organization of organizational change,” Computational and
Mathematical Organization Theory, vol. 13, pp. 147-184, 2007.

[3] M. Hoogendoorn, C. Jonker, and J. Treur, “Redesign of organizations
as a basis for organizational change,” in Coordination, Organizations,
Norms and Institutions II, LNAI, V. Dignum, N. Fornara, P. Noriega,
G. Boella, O. Boissier, E. Matson, and J. V. Salceda, Eds. Springer,
2007, vol. 4386, pp. 46-62.

[4] L. Amgoud, N. Maudet, and S. Parsons, “Modelling dialogues using
argumentation,” in Fourth International Conference on MultiAgent Sys-
tems. Boston, MA, USA: IEEE, 2000, pp. 31-38.

group PlayerRole memberof SocRole {

Fig. 21.

workframes:
workframe wf_BeingAlive {
detectables:
detectable dt MoiseOrganizationStructure {
detect ((<MoiseOrganizationStructure>.

describesMoiseOrganizationStructureOf
= unknown)) ;

}//dt_MoiseOrganizationStructure

detectable dt_FormalOganziation {
detect ((<MoiseOrganizationStructure>.
describesFormalOrganizationOf
= unknown)) ;
}//dt_FormalOganziation

detectable dt FunctionalStructure {
detectf]<Moise0rganizationstructure>.
describesMoiseFunctionalStructureOf
= unknown)) ;
}//dt_FunctionalStructure

do {
Initialize();
BeingAlive() ;
}//do
}//wf_BeingAlive

}\\PlayerRole

Brahms source code of the workframe that calls the BeingAlive

activity in MoiseRole group.

group PlayerRole memberof SocRole {

activities:
composite activity ExecuteMission(MoiseMissionConcept mission) {

workframes:
workframe wf_ PlaySoccer {

variables:
foreach (TeamGroup) team;
foreach (TeamGroup) subgroup;

detectables:
detectable dt_DetectFootballField {

detect ((<FieldArea> isSubAreaOf unknown)) ;

when (knownval (team.startGame = true)
knownval (team hasSubGroup subgroup) and
knownval (current isPartOfGroup subgroup))

do {

PlayingSoccer (mission) ;
}
}//wf_PlaySoccer
}//composite_activity ExecuteMission

}\\PlayerRole

Fig. 22. Brahms source code of ExecuteMission activity in PlayerRole group.

[5]

[6

=

[7]

[8]
[9]

[10]

(11]

(12]

P. McBurney, S. Parsons, and M. Wooldridge, “Desiderata for agent
argumentation protocols,” in AAMAS ’02: Proceedings of the first
international joint conference on Autonomous agents and multiagent
systems. New York, NY, USA: ACM, 2002, pp. 402—409.

K. Atkinson, T. Bench-Capon, and P. Mcburney, “A dialogue game pro-
tocol for multi-agent argument over proposals for action,” Autonomous
Agents and Multi-Agent Systems, vol. 11, no. 2, pp. 153-171, 2005.

T. v. d. Weide, F. Dignum, J.-J. C. Meyer, H. Prakken, and G. Vreeswijk,
“Personality-based practical reasoning,” University of Utrecht, Tech.
Rep., 2007.

M. Tambe, “Towards flexible teamwork,” Journal of Artificial Intelli-
gence Research, vol. 7, pp. 83-124, 1997.

D. N. Pynadath and M. Tambe, “The communicative multiagent team
decision problem: Analyzing teamwork theories and models,” Journal
of Artificial Intelligence Research, vol. 16, pp. 389423, 2002.

X. Fan and J. Yen, “Modeling and simulating human teamwork behav-
iors using intelligent agents,” The Pennsylvania State University, School
of Information Sciences and Technology, Tech. Rep., 2004.

X. Fan, B. Sun, S. Sun, M. McNeese, and J. Yen, “Rpd-enabled agents
teaming with humans for multi-context decision makingmulti-c,” in
AAMAS 2006. Hakodate, Hokkaido, Japan: ACM, 2006.

F. Trompenaars, Riding the waves of culture. London: The Economists
Books, 1993.

Sierhuis et al: Towards Organization Aware Agent-based Simulation 75

group PlayerRole memberof SocRole {

activities:
composite_activity PlayingSoccer (MoiseMissionConcept mission) {

end_condition: detectable;

detectables:
detectable dt EndOfHalf {
detect ((TheGame.endOfHalf =
then end activity;
}//dt_EndOfHalf

true))

workframes:
workframe wf_GettingTheBall {
when (
knownval (current.obtainTeamGoalForTheIndividual =
knownval (current.myIndividualGoalForTheTeam =
get_the_ball) and
knownval (current.location =
do {
println c("Agent %1 is getting the ball", current);
GettingTheBall() ;
}//do
}//wf_GettingTheBall

SoccerBall.location))

workframe wf_GoTowardsTheOpponentField {
when (
knownval (current.obtainTeamGoalForTheIndividual =
knownval (current.myIndividualGoalForTheTeam =
go_towards_the opponent field))
do {
println c("Agent %1 is going towards the opponent's goal",
current) ;
GoingTowardsTheOpponentField() ;
}//do
}//wf_GoTowardsTheOpponentField

workframe wf GoToMidfield {
variables:
forone (MoiseGoalConcept) nextGoal;
when (
knownval (current.obtainTeamGoalForTheIndividual =
knownval (current.myIndividualGoalForTheTeam =
be placed_in_the middle field) and
knownval (be_placed in_ the middle_field.
nextMoiseGoalInSequence = nextGoal))
do
println _c("Agent %1 is going to be placed in midfield",
- current) ;
GoingToMidfield() ;
MoveOverField (Arena, LeftMidFieldArea,
conclude ((current.myTeamGoalForTheIndividual =
conclude ((current.myIndividualGoalForTheTeam =
conclude ((current.obtainTeamGoalForTheIndividual =
}//do
}//wf_GoToMidfield

}//composite_activity PlayingSoccer
}//group PlayerRole

Fig. 23. Brahms source code of PlayingSoccer activity in PlayerRole group.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

G. Hofstede, Cultures Consequence, 2nd ed. Thousand Oaks, CA: Sage
Publications, 2001.

V. Subrahmanian, M. Albanese, M. V. Martinez, D. Nau, D. Reforgiato,
G. I. Simari, A. Sliva, O. Udrea, and J. Wilkenfeld, “Cara: A cultural-
reasoning architecture,” IEEE Intelligent Systems, vol. 1541, no. 1672,
pp. 12-15, 2007.

L. Yilmaz and T. 1. Oren, Agent-Directed Simulation and Systems En-
gineering., ser. Wiley Series in Systems Engineering and Management.
Berlin, Germany: Wiley, In Press.

W. Clancey, M. Sierhuis, B. Damer, and B. Brodsky, “The cognitive
modeling of day in the life social behaviors using brahms,” in Cognition
and Multi-Agent Interaction, R. Sun, Ed. New York, NY: Cambridge
University Press, 2005, pp. pp. 151-184.

W. J. Clancey, “Simulating activities: Relating motives, deliberation, and
attentive coordination,” Cognitive Systems Research, vol. 3, no. 3, pp.
471-499, 2002.

G. Klein, P. Feltovich, J. Bradshaw, and D. D. Woods, “Common
ground and coordination in joint activity,” in Organizational simulation,
W. Rouse and K. Boff, Eds. New York: Wiley-Interscience, 2005, pp.
139-184.

A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini,
“Coordination artifacts:environment-based coordination for intelligent
agents,” in Third International Joint Conference on Autonomous Agents

true) and

true) and

true) and

"GoingToLeftMidfield") ;
nextGoal)) ;
nextGoal)) ;
true));

76 INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS, VOL. 14, NO. 1, MARCH 2009

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]
[33]

[34]

[35]

[36]

(371

(38]

[39]

and Multiagent Systems, vol. 1.
Society, 2004.

M. Sierhuis, W. J. Clancey, and R. J. v. Hoof, “Brahms: An agent-
oriented language for work practice simulation and multi-agent systems
development,” in Multi-Agent Programming, 2nd Edition, R. H. Bordini,
M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni, Eds. Springer, In
Press.

W. Clancey, P. Sachs, M. Sierhuis, and R. v. Hoof, “Brahms: Simulating
practice for work systems design,” International Journal on Human-
Computer Studies, vol. 49, pp. 831-865, 1998.

J. F. Hiibner, J. S. Sichman, and O. Boissier, “Developing organised
multiagent systems using the MOISE+ model: programming issues at
the system and agent levels,” International Journal of Agent-Oriented
Software Engineering, vol. 1, no. 3/4, pp. 370-395, 2007.

J. Gratch and S. Marsella, “A domain-independent framework for
modeling emotion,” Cognitive Systems Research, vol. 5, no. 4, pp. 269—
306, 2004.

O. Boissier, J. F. Hiibner, and J. S. Sichman, “Organization oriented
programming: From closed to open organizations,” in Proceedings of
the 7th International Workshop on Engineering Societies in the Agents
World (ESAW’07), ser. LNCS, vol. 4457. Springer, 2007, pp. 86—105.
M. Prietula, K. Carley, and L. Gasser, Simulating Organizations: Com-
putational Models Of Institutions and Groups. Menlo Park, CA:
AAAI/MIT Press, 1998.

S. Moss, H. Gaylard, S. Wallis, and B. Edmonds, “Sdml: A multi-agent
language for organizational modelling,” Computational and Mathemat-
ical Organization Theory, vol. 4, no. 1, pp. 43-70, 1998.

J. Ferber, O. Gutknecht, and F. Michel, “From agents to organizations:
An organizational view of multi-agent systems,” in Proceedings of
4th International Workshop on Agent-Oriented Software Engineering
(AOSE’03), ser. LNCS, vol. 2935. Springer, 2003, pp. 214-230.

F. Brazier, P. van Eck, and J. Treur, “Modelling a society of simple
agents: From conceptual specification to experimentation,” Journal of
Applied Intelligence, vol. 14, pp. 161-178, 2001.

M. Esteva, J. Padget, and C. Sierra, “Formalizing a language for
institutions and norms,” ser. LNCS, J.-J. C. Meyer and M. Tambe, Eds.,
vol. 2333. Springer, 2002, pp. 348-366.

J. Vazquez-Salceda, The Role of Norms and Electronic Institutions
in Multi-Agent Systems: The HARMONIA Framework, ser. Whitestein
Series in Software Agent Technologies and Autonomic Computing.
Birkhiuser, 2004.

C. Jonker, A. Sharpanskykh, J. Treur, and P. Yolum, “A framework
for formal modeling and analysis of organizations,” Journal of Applied
Intelligence, vol. 27, pp. 49-66, 2007.

V. Dignum, Ed., Multi-Agent Systems: Semantics and Dynamics of
Organizational Models. 1GI Global, 2009, to appear.

F. Dignum, V. Dignum, and C. Jonker, “Towards agents for policy
making,” 2008.

B.-J. v. Putten, V. Dignum, M. Sierhuis, and S. R. Wolfe, “Opera and
brahms: a symphony?” in Agent-Oriented Software Engineering (AOSE)
2008 at The Sixth International Joint Conference on Autonomous
Agents & Multi-Agent Systems (AAMAS 2008), vol. Forthcoming LNCS
Proceedings. Estoril, Portugal: Springer, 2008.

M. Esteva, B. Rosell, J. A. Rodriguez-Aguilar, and J. L. Arcos, “AMELI:
An agent-based middleware for electronic institutions,” in Proceedings
of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’04). 1EEE Computer Society, 2004, pp.
236-243.

D. Okouya and V. Dignum, “OperettA: a prototype tool for the design,
analysis and development of multi-agent organizations,” in Proceedings
of the 7th international joint conference on Autonomous agents and mul-
tiagent systems (AAMAS’08). Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems, 2008, pp. 1677-1678.
J. Bradshaw, M.Sierhuis, A. Acquist, P. Feltovich, R. Hoffman, R. Jef-
fers, D. Prescott, N. Suri, A. Uszok, and R. v. Hoof, “Adjustable
autonomy and human-agent teamwork in practice: An interim report on
space applications,” in Agent Autonomy, H. Hexmoor, C. Castelfranchi,
and R. Flacone, Eds. Kluwer, 2003.

A. Uszok, J. M. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton,
and S. Aitken, “Kaos policy management for semantic web services,”
IEEE Intelligent Systems, vol. 19, no. 4, pp. 3241, 2004.

C. Castelfranchi, F. Dignum, C. M. Jonker, and J. Treur, “Deliberative
normative agents: Principles and architecture,” in Intelligent Agents VI.
Agent Theories Architectures, and Languages, ATAL99, N. R. Jennings
and Y. Lesperance, Eds. Springer Berlin / Heidelberg, 2000, vol. 1757,
pp. 364-378.

New York, NY: IEEE Computer

[40] F. Dignum, B. Edmonds, and L. Sonenberg, “The use of logic in
agent-based social simulation,” Journal of Artificial Societies and Social
Simulation, vol. 7, no. 4, 2004.

M. Sierhuis, J. M. Bradshaw, A. Acquisti, R. v. Hoof, R. Jeffers,
and A. Uszok, “Human-agent teamwork and adjustable autonomy in
practice,” in The 7th International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS), Nara, Japan, 2003.

E. Bottazzi and R. Ferrario, “A path to an ontology of organizations,”
in Proceedings of International EDOC Workshop on Vocabularies,
Ontologies and Rules for The Enterprise (VORTE 2005), 2005, pp. 9-16.

[41]

[42]

Maarten Sierhuis Maarten Sierhuis is senior scientist at NASA Ames
Research Center (ARC) and adjunct professor at Carnegie Mellon Universitys
Silicon Valley campus. He is also a visiting professor in the Man-Machine
Interaction group at Delft University of Technology. He is co-principal inves-
tigator of the Brahms agent-oriented language and simulation environment,
in the Work Systems Design & Evaluation group in the Collaborative and
Assistant Systems area within the Intelligent Systems Division at NASA
ARC. He holds a PhD in social science informatics from the University of
Amsterdam, in which he developed a theory for modeling and simulating work
practice using Brahms. Prior to joining NASA, Sierhuis was a member of
technical staff at NYNEX Science & Technology (1990-1997); earlier he was
at IBM in New York and Sema Group in The Netherlands (1986-1990). He has
presented invited lectures on Brahms, has published widely in this area and
holds two software patents involving work practice simulation and hypertext
databases. For more information visit: http://homepage.mac.com/msierhuis

Catholijn Jonker Catholijn Jonker is full professor of Man-Machine Inter-
action at the Faculty of Electrical Engineering, Mathematics and Computer
Science of the Delft University of Technology. She studied computer science,
and did her PhD studies at Utrecht University. After a post-doc position
in Bern, Switzerland, she became assistant (later associate) professor at the
Department of Artificial Intelligence of the Vrije Universiteit Amsterdam.
From september 2004 unitl september 2006 she was a full professor of Arti-
ficial Intelligence / Cognitive Science at the Nijmegen Institute of Cognition
and Information of the Radboud University Nijmegen. She chaired De Jonge
Akademie (Young Academy) of the KNAW (The Royal Netherlands Society
of Arts and Sciences) in 2005 and 2006, and she is a member of the same
organization from 2005 through 2010.

Birna van Riemsdijk M. Birna van Riemsdijk is assistant professor in
the Man-Machine Interaction group at Delft University of Technology., The
Netherlands. Until september 2008, she was a postdoc in the Programming and
Software Engineering group at Ludwig-Maximilians-University in Munich,
and she obtained here PhD in the Intelligent Systems group at Utrecht
University, The Netherlands. She has done research in the areas of agent
programming and service-oriented systems. She is a member of the steering
committee of the International Workshop on Declarative Agent Languages and
Technologies (DALT), and has been a co-chair of this workshop several times.
She is a PC member for numerous international workshops and conferences
in the field of agent technology and intelligent systems.

Koen Hindriks Koen Hindriks is Assistant Professor at the Man-Machine
Interaction group at the Faculty of Electrical Engineering, Mathematics and
Computer Science of the Delft University of Technology. He studied comput-
ing science, and finished his PhD at Utrecht University on agent programming
languages. His research interests include common-sense reasoning, agent-
oriented programming based on common sense concepts like beliefs and goals,
and the verification and specification of agent programs. He has designed
and developed several agent programming languages, including 3APL and
GOAL. He is also interested in the design and development of negotiating
agents, which involves among others research on representation, strategies and
learning techniques that can be usefully applied in the development of such
agents.

